Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Modelling facility for field-average average formation pressure 

LaTeX Math Inline
bodyp(t)
 at  at any time moment 
LaTeX Math Inline
bodyt
 as response to production flowrates history, which in case of MBO fluid takes form:

LaTeX Math Block
anchorMatBal
alignmentleft

...

\phi_n(p) = \frac{B_o - R_s \, B_g}{1- R_s \, R_v} \cdot F_O 
+\frac{ B_g - R_v \, B_o}{1- R_s \, R_v} \cdot F_G 
+B_w  \, F_W 
LaTeX Math Block
anchorphin
alignmentleft
\phi_n = \exp \left[ c_\phi \, (p-p_i)  \right] \approx 1 + c_\phi \, (p-p_i)  + 0.5 \, c^2_\phi \, (p-p_i)^2 
LaTeX Math Block
anchorGO
alignmentleft
F_O = V_\phi^{-1} \, \delta \, Q_O + F_{Oi}
LaTeX Math Block
anchorGO
alignmentleft
F_{Oi} = \frac{s_{oi}}{B_{oi}}  + \frac{R_{vi}\, s_{gi}}{B_{gi}}
LaTeX Math Block
anchordQO
alignmentleft
\delta \, Q_O = - Q^{\uparrow}_O
LaTeX Math Block
anchorGG
alignmentleft
F_G = V_\phi^{-1} \, \delta \, Q_G + F_{Gi}
LaTeX Math Block
anchorGO
alignmentleft
F_{Gi} = \frac{R_{si}\, s_{oi}}{B_{oi}}  + \frac{ s_{gi}}{B_{gi}} 
LaTeX Math Block
anchordGG
alignmentleft
\delta \, Q_G = Q^{\downarrow}_G - Q^{\uparrow}_

...

G + Q^{\downarrow}_{GCAP}
LaTeX Math Block
anchorGW
alignmentleft
F_W = V_\phi^{-1} \, \delta \, Q_W + F_{Wi} 
LaTeX Math Block
anchorGO
alignmentleft
F_{Wi} = \frac{ s_{wi}}{B_{wi}} 
LaTeX Math Block
anchordGW
alignmentleft
\delta \, Q_W = Q^{\downarrow}_

...

W - Q^{\uparrow}_W + Q^{\downarrow}_{WAQ}

where

LaTeX Math Inline
bodyp_i

initial formation pressure:

LaTeX Math Inline
bodyp_i = p(0)

LaTeX Math Inline
body--uriencoded--Q%5e%7B\uparrow%7D_O(t)

Cumulative oil production by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyV_\phi = V \cdot \phi_i

initial open pore volume of the main pay (excluding the aquifer and gas cap)

LaTeX Math Inline
body--uriencoded--Q%5e%7B\uparrow%7D_G(t)

Cumulative gas production by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
body\phi_i = \phi(p_i)

LaTeX Math Inline
body--uriencoded--Q%5e%7B\uparrow%7D_W(t)

Cumulative water production by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyc_\phi

pore compressibility 

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_W(t)

Cumulative water injection by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
body--uriencoded--s_%7Bwi%7D

initial water saturation

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_G(t)

Cumulative gas injection by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
body--uriencoded--s_%7Bgi%7D

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_%7BWAQ%7D(t)

Cumulative water influx from Aquifer Expansion by the time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
body--uriencoded--s_%7Boi%7D

initial oil saturation:

LaTeX Math Inline
body--uriencoded--s_%7Boi%7D = 1 - s_%7Bwi%7D - s_%7Bgi%7D

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_%7BGCAP%7Dt)

Cumulative gas influx from Gas Cap expansion by the time moment

LaTeX Math Inline
bodyt





LaTeX Math Inline
bodyB_o(p)

Oil formation volume factor as functions of reservoir pressure

LaTeX Math Inline
bodyp

LaTeX Math Inline
bodyR_s(p)

Solution GOR as functions of reservoir pressure

LaTeX Math Inline
bodyp

LaTeX Math Inline
bodyB_g(p)

Gas formation volume factor as functions of reservoir pressure

LaTeX Math Inline
bodyp

LaTeX Math Inline
bodyR_v(p)

Vaporized Oil Ratio as functions of reservoir pressure

LaTeX Math Inline
bodyp

LaTeX Math Inline
bodyB_w(p)

Water formation volume factor as functions of reservoir pressure

LaTeX Math Inline
bodyp
 





The MatBal equation 

LaTeX Math Block Reference
anchorMatBal
can be complemented by constant PI model of Bottom-Hole Pressure (
LaTeX Math Inline
bodyp^{\uparrow}_{wf}(t)
 for producers and 
LaTeX Math Inline
bodyp^{\downarrow}_{

...

wf}(t)
 for injectors):

LaTeX Math Block
anchorBHP_PROD
alignmentleft
P^
p^{\uparrow}_{wf, k}(t) = p(t) - {J^{\uparrow}_k}^{-1} \cdot \frac{dQ^{\uparrow}_k}{dt}
LaTeX Math Block
anchorBHP_INJ
alignmentleft
P^
p^{\downarrow}_{wf, \, j}(t) = p(t) -  {J^{\downarrow}_j}^{-1} \cdot \frac{dQ^{\downarrow}_j}{dt}
wherewhere

LaTeX Math Inline
body

p_i = p(0)initial formation pressure

p^{\uparrow}_{wf, \, k}(t)

BHP in

LaTeX Math Inline
body

\Delta Q (t)cumulative reservoir fluid balance

LaTeX Math Inline
body

P^

p^{\

uparrow

downarrow}_{wf, \, j}(t)

field-average

BHP in

producers

LaTeX Math Inline
bodyj
-th injector

LaTeX Math Inline
bodyQ^{\uparrow}_

t

k(t)

cumulative offtakes from

LaTeX Math Inline
bodyk
-th producer by the time moment
LaTeX Math Inline
bodyt

LaTeX Math Inline
body

P^

Q^{\downarrow}_

{wf}

j(t)

field-average BHP in injectors

cumulative intakes to

LaTeX Math Inline
bodyj
-th injector by the time moment
LaTeX Math Inline
bodyt

LaTeX Math Inline
body

Q^

J^{\

downarrowcumulative intakes by the time moment

uparrow}_

t(t)

k

LaTeX Math Inline
bodyk

t

LaTeX Math Inline
bodyJ^{\

phi_e(p)effective porosity as function of formation pressure 

downarrow}_j

injectivity Index of

LaTeX Math Inline
body

p(t) 


In practice there is no way to measure the external influx 

LaTeX Math Inline
bodyQ^{\downarrow}_{GC}(t)

...

 and 

LaTeX Math Inline
body

...

Q^{\downarrow}_{AQ}(t)
 so that one need to model them and calibrate model parameters to fit available data on production flowrates history and formation pressure data records. 

...

There is a list of various analytical Aquifer Drive and  Gas Cap Drive models which are normally related to pressure dynamics

LaTeX Math Inline
bodyp(t)
:

Gas Cap Drive @model 
LaTeX Math Inlinebody
Aquifer Drive @model
LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{
AQ
GC}(t)

cumulative volumetric inflow from aquifer expansion

LaTeX Math Inline
bodyA_e

LaTeX Math Inline
bodyh_e

 = Q^{\downarrow}_{GC}(p(t))
LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = Q^{\downarrow}_{AQ}(p(t))

which closes equation 

LaTeX Math Block Reference
anchorMatBal
 for the pressure 
LaTeX Math Inline
bodyp(t)
.

Approximations

...

In some specific cases equation For low compressibility rocks and fluids 

LaTeX Math Inline
body\{ \phi_e = {\rm const}, \ c_t = {\rm const} \}
the MatBal equation 
LaTeX Math Block Reference
anchorMatBal
can be explicitly integrated with the accuracy sufficient for practical applications:

Low pressure dry gas

LaTeX Math Inline
body--uriencoded--c_t = c_\phi + c_%7B\rm fluid%7D = %7B\rm const%7D

LaTeX Math Inline
body--uriencoded--c_g = \sim \frac%7B1%7D%7Bp%7D

LaTeX Math Block
anchorQ6XP7
alignmentleft
p(t)  = p_i + \frac{\Delta Q(t)}{V_

...

\phi \cdot c_t}

...

where

LaTeX Math Inlinebody
V_e = A_e \, h_e \, \phi_edrainage volume

For ideal dry gas:



LaTeX Math Block
anchor3J3AD
alignmentleft
p(t)  = p_i \exp \left[ \frac{\Delta Q(t)}{V

...

_\phi} \right]

where

LaTeX Math Inline
body\Delta Q
 is Cumulative Voidage Replacement Balance (CVRB):

LaTeX Math Block
anchorDQ
alignmentleft
\Delta Q = -  \frac{B_o - R_s \, B_g}{1- R_s \, R_v} \cdot  \, Q^{\uparrow}_O + \frac{ B_g - R_v \, B_o}{1- R_s \, R_v} \cdot \, \left( Q^{\downarrow}_G - Q^{\uparrow}_G + Q^{\downarrow}_{GCAP} \right) + B_w \, \left( Q^{\downarrow}_W - Q^{\uparrow}_W + Q^{\downarrow}_{WAQ} \right)


The above approximations sometime allow using simple graphical methods for rough estimation of drainage volume 

LaTeX Math Inline
bodyV_e
and associated Hydrocarbon Reserves.

See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Material Balance Analysis (0D or MatBal)MatBal)

Material Balance Pressure Plot ][ FMB Pressure @model]

[ Derivation of Material Balance Pressure @model ]

[ Modified Black Oil fluid @model (MBO) ]