Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Block
anchorpump_m
alignmentleft
\dot m  = M(p_{\rm out}, p_{\rm in})

It's often presented in terms of intake volumetric flowrate:

LaTeX Math Block
anchorY440Npump_q
alignmentleft
q = q_{in} = \frac{\dot m}{\rho(p_{in})}  = \frac{M(p_{\rm out}, p_{\rm in})}{\rho(p_{in})}

...

LaTeX Math Inline
body\eta

pump efficiency


In most practical cases  the 
pump model 

LaTeX Math Block Reference
anchorpump_q
 depends on the difference between intake and discharge pressure 
LaTeX Math Inline
body--uriencoded--p_%7B\rm out%7D - p_%7B\rm in%7D
 and called Pump Characteristic Curve (see Fig. 1):

LaTeX Math Block
anchorKD0ZN
alignmentleft
q = q(p_{\rm out} - p_{\rm in})

Fig. 1. Example of Pump Characteristic Curve.


A
popular popular pump proxy model is given by the quadratic equation with 3 inputs (

LaTeX Math Inline
body--uriencoded--\%7B q_%7B'rf max%7D, \delta p_%7B\rm max%7D, k_f \%7D
):

LaTeX Math Block
anchorq_pump
alignmentleft
q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -1 + k_f +  \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p_{\rm out}- p_{\rm in})/\delta p_{\rm max}) \ } \, \right]
LaTeX Math Block
anchorq_pump
alignmentleft
p_{\rm out} = p_{\rm in} +  \delta p_{\rm max} \cdot \left[ 1+ 
(k_f -1 ) \cdot \frac{q}{q_{\rm max}} - k_f \cdot \left( \frac{q}{q_{\rm max}} \right)^2
 \right ]
LaTeX Math Block
anchorQ056T
alignmentleft
\eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 -  q/q_{\rm max})

where

LaTeX Math Inline
body--uriencoded--\delta p_%7B\rm max%7D

maximum pressure gain that pump can exert over the input pressure 

LaTeX Math Inline
bodyp_{\rm in}

LaTeX Math Inline
bodyq_{\rm max}

maximum flowrate that pump can produce

LaTeX Math Inline
bodyk_f \in [0,1]

total hydraulic pump friction (dimensionless)

LaTeX Math Inline
body\eta

pump efficiency efficiency

LaTeX Math Inline
body\eta_{\rm max}

maximum pump efficiency


Real pumps have non-constant

LaTeX Math Inline
bodyk_f =k_f(q)
friction coefficient which often modelled as a 3rd order polynomial and the overall real-pump model taking 6-inputs.


Many The plunger pump and centrifugal pumps can be normally adjusted by the variation of the working frequency  frequency which affects the maximum the maximum pump flowrate and maximum pressure gain as:

LaTeX Math Block
anchor1
alignmentleft
q_{\rm max} = q^*_{\rm max}  \cdot \frac{f}{f^*}
LaTeX Math Block
anchor1
alignmentleft
\delta p_{\rm max} = \delta p^*_{\rm max}  \cdot \left( \frac{f}{f^*} \right)^2

where

LaTeX Math Inline
body--uriencoded--q_%7B\rm max%7D

maximum intake flowrate at the working frequency 

LaTeX Math Inline
bodyf

LaTeX Math Inline
body--uriencoded--\delta p_%7B\rm max%7D

maximum pressure gain at the working frequency 

LaTeX Math Inline
bodyf

LaTeX Math Inline
bodyf

adjusted working frequency

LaTeX Math Inline
body--uriencoded--q%5e*_%7B\rm max%7D

maximum intake flowrate at the nominal frequency 

LaTeX Math Inline
body--uriencoded--f%5e*

LaTeX Math Inline
body--uriencoded--\delta p%5e*_%7B\rm max%7D

maximum pressure gain at the nominal frequency 

LaTeX Math Inline
body--uriencoded--f%5e*

LaTeX Math Inline
body--uriencoded--f%5e*

nominal frequency

See also

...

Natural Science / Engineering / Device / Pump

...