The most general Pump model is given as a function of the mass flowrate on the intake  and discharge pressure :

\dot m  = M(p_{\rm out}, p_{\rm in})

It's often presented in terms of intake volumetric flowrate:

q = q_{in} = \frac{\dot m}{\rho(p_{in})}  = \frac{M(p_{\rm out}, p_{\rm in})}{\rho(p_{in})}

where

fluid density as a function of fluid pressure 


The electrical power consumption   is given by:

W =  \eta(q) \cdot q \cdot (p_{\rm out}-p_{\rm in})

where

pump efficiency


In most practical cases  the 
pump model  depends on the difference between intake and discharge pressure  and called Pump Characteristic Curve (see Fig. 1):

q = q(p_{\rm out} - p_{\rm in})

Fig. 1. Example of Pump Characteristic Curve.


A popular 
pump proxy model is given by the quadratic equation with 3 inputs ():

q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -1 + k_f +  \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p_{\rm out}- p_{\rm in})/\delta p_{\rm max}) \ } \, \right]
p_{\rm out} = p_{\rm in} +  \delta p_{\rm max} \cdot \left[ 1+ 
(k_f -1 ) \cdot \frac{q}{q_{\rm max}} - k_f \cdot \left( \frac{q}{q_{\rm max}} \right)^2
 \right ]
\eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 -  q/q_{\rm max})

where

maximum pressure gain that pump can exert over the input pressure 

maximum flowrate that pump can produce

total hydraulic pump friction (dimensionless)

pump efficiency

maximum pump efficiency


Real pumps have non-constant friction coefficient which often modelled as a 3rd order polynomial and the overall real-pump model taking 6-inputs.


Many pumps can be normally adjusted by the variation of the working frequency which affects the maximum pump flowrate and maximum pressure gain as:

q_{\rm max} = q^*_{\rm max}  \cdot \frac{f}{f^*}
\delta p_{\rm max} = \delta p^*_{\rm max}  \cdot \left( \frac{f}{f^*} \right)^2

where

maximum intake flowrate at the working frequency 

maximum pressure gain at the working frequency 

adjusted working frequency

maximum intake flowrate at the nominal frequency 

maximum pressure gain at the nominal frequency 

nominal frequency

See also


Natural Science / Engineering / Device / Pump

Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS)


References



https://www.ampika.ru/Princip_raboty.html 

Matthew Amao, Electrical Submersible Pumping (ESP) Systems, March 09, 2014

Он-лайн калькулятор трубопроводной сети