Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

Explicit solution of  Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for the fast computation.


Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

...

Steady-State flowQuasi-isothermal flow

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const

Constant inclinationConstant friction along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \theta(l) = \theta = %7B\rm const%7D \rightarrow \cos \theta = \frac%7Bdz%7D%7Bdl%7D = %7B\rm const%7D

LaTeX Math Inline
bodyf(l) = f = \rm const

Linear density

LaTeX Math Inline
body--uriencoded--\rho = \rho%5e* \cdot ( 1 + c%5e* \cdot p)
  which leads to  
LaTeX Math Inline
body--uriencoded--\displaystyle c(p) = \frac%7Bc%5e*%7D%7B1 + c%5e* \cdot p %7D
  and  
LaTeX Math Inline
body--uriencoded--c%5e* \, \rho%5e* = c_0 \, \rho_0


Equations

...

Pressure profile along the pipe
LaTeX Math Block
anchorPressureProfile
alignmentleft
L = \frac{1}{2 \, G \, c^*  \rho^*}  \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F}
-\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
LaTeX Math Block
anchor1
alignmentleft
 \cos \theta \neq 0
LaTeX Math Block
anchorG0
alignmentleft
L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2)
 -+ \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}
LaTeX Math Block
anchor1
alignmentleft
 \cos \theta = 0

...

LaTeX Math Inline
body--uriencoded--\displaystyle j_m = \frac%7B \dot m %7D%7B A%7D

mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \frac%7B \dot m %7D%7B \rho_0%7D

Intake volumetric flowrate

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f = f(%7B\rm Re%7D(T,\rho), \, \epsilon) = \rm const

Darcy friction factor 

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,\rho) =\frac%7Bj_m \cdot d%7D%7B\mu(T,\rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

LaTeX Math Inline
bodyG = g \, \cos \theta = \Delta Z/L = \rm const

gravity acceleration along pipe 

LaTeX Math Inline
body--uriencoded--\Delta Z = Z_%7Bout%7D - Z_%7Bin%7D

altitude drop in downwards direction (positive if descending)

LaTeX Math Inline
body--uriencoded--F = j_m%5e2 \cdot f/(2d) = F(l) = \rm const


Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in GF-Proxy Pipe Flow @model


Alternative forms

...

 Volumetric Flowrate in inclined pipe

LaTeX Math Inline
body\cos \theta \neq 0

LaTeX Math Block
anchorq_0G
alignmentleft
q_0^2 = \frac{2 d A^2 G}{f} \cdot \left[ 

1 + \frac{ (\rho/\rho_0)^2 -1}{1- (\rho_0/\rho
_0
)^{\frac{2}{n-1}} \cdot 
\exp \left( \frac{fL/d}{ n-1}  \right)}
\right]

Volumetric Flowrate in horizontal pipe

LaTeX Math Inline
body\cos \theta =

LaTeX Math Block
anchor1
alignmentleft
\cos \theta \neq

0

LaTeX Math Block
anchorq0_G0
alignmentleft
q_0^2 = \frac{A^2}{c^* \rho^*} \cdot \frac{1 - (\rho
_0
/\rho_0)^2
-1
}{2 \ln (\rho_0/\rho) + fL/d}

where

LaTeX Math Block
anchor
1
n
alignmentleft
n = \
cos
frac{f \
theta = 0

The equation 

LaTeX Math Block Reference
anchorG0
for horizontal pipelines can be re-written explicitly in terms of pressure:

...

, L^*}{d}
LaTeX Math Block
anchorL*

...

alignmentleft
L^* = \frac{

...

1}{

...

2 \, G \, c^* \, \rho^*} = \frac{1}{2 \, G \, c_0 \, \rho_0}
LaTeX Math Block
anchorrho_rho0
alignmentleft
\rho_0/\rho = \frac{1

...

+

...

c^* 

...

p_0}{1

...

+

...

c^* p}

with the following asymptotes:

Low compressible fluids:

LaTeX Math Inline
body--uriencoded--c%5e* p \ll 1, \, \, c%5e* p_0 \ll 1

High compressible fluids:

LaTeX Math Inline
body--uriencoded--c%5e* p \gg 1, \, \, c%5e* p_0 \gg 1

LaTeX Math Inline
body--uriencoded--\displaystyle \rho_0/\

...

rho = c%5e* \cdot (p_0-p)

 

LaTeX Math Inline
body\displaystyle \rho_0/\rho = p_0/p


Approximations

...


LaTeX Math Inline
bodyn \geq 1
 which is equivalent to
LaTeX Math Inline
body--uriencoded--L%5e* \geq d
 and holds true for the most of practical tube diameters, as the lowest practical values of 
LaTeX Math Inline
body--uriencoded--L%5e* \geq d
are 
LaTeX Math Inline
body--uriencoded--L%5e* \geq 7,000 \, %7B\rm m%7D
 

Alternative

Pressure profile along the pipe

LaTeX Math Block
anchor
PressureProfile
q0_G
alignmentleft
L
q_0^2 = 
\frac{
1}{
2 \, 
G
d \, 
c^*
A^2 
\rho^*
\, G}{f} 
\cdot \
ln
left [
1 + \frac{
G \, \rho^2-F}{G
(\rho/\rho_0)^2-1}{1- \exp (2 \, c_0 \, \rho_
0^2-F} -
0 \, G \, L)}
 \right]
=
\frac{2 \, d \, A^2  \, g}{f \, L} \cdot \left [ 
\
ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
Delta Z + ((\rho/\rho_0)^2 -1) \cdot  \frac{ \Delta Z}{1 - \exp(2 \, c_0 \, \rho_0 \, g \,  \Delta Z)}
\right]
LaTeX Math Block
anchor
1
q0_G
alignmentleft
\cos
\dot m = \
theta
rho_0 \
neq
, q_0
LaTeX Math Block
anchor
G0
static
alignmentleft
\rho =
\rho_0 \, \exp(c_0 \, \rho_0 \, G \, L
=
) \, \sqrt{1 - \frac{
1
f \, q_0^2}{
2F
2 \, 
c^*
d \
rho^*
, A^2} \cdot \frac{1- \exp(-2 \, c _0 \, \rho_
0^2 -
0 \, G \
rho^2)
, L)}{G}} 
=\rho_0 \, \exp (с_0 \, \rho_0 \, g \, \Delta Z) \cdot \sqrt{ 1 - \frac{
2d}{f}
8}{\pi^2} \cdot   \frac{f \, L}{d^5} \cdot q_0^2 \
ln
cdot \frac{1 - \exp(- 2 \, c_0 \, \rho_0 \, g \, \Delta Z) } { g \, \Delta Z}}
LaTeX Math Block
anchor1
alignmentleft
p(L) = p_0 + \frac{\rho/\rho_0 -1}{c_0} 
Pressure Profile in GC-proxy static fluid column @model
LaTeX Math Block
anchor
1
static
alignmentleft
\cos \theta = 0
\rho = \rho_0 \, \exp (c_0 \, \rho_0 \, g \, \Delta Z)
LaTeX Math Block
anchorstatic
alignmentleft
p(L) =  p_0 + \frac{\exp (c_0 \, \rho_0 \, g \, \Delta Z) -1}{c_0} 


See also

...