Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

SynonymGeothermal Temperature Profile @model = Constant Areal Geothermal Temperature Profile @model 

Motivation

...


In many subsurface applications which require the knowledge of subsurface temperature distributions the land area of the study is small enough to consider the subsurface 
heat flux  

...

LaTeX Math Inline
body

...

--uriencoded--%7B \bf j%7D(x,y,z) = \%7B j_x, \, j_y, \, j_z \%7D
 and Thermal Conductivity 

LaTeX Math Inline
body

...

--uriencoded--\lambda_e(%7B\bf r%7D)
 to be homogeneous across location area: 

LaTeX Math Block
anchor1
alignmentleft
{\bf j}({\bf r}) ={\bf j}(x,y,z)={ \bf j}(z)
LaTeX Math Block
anchor1
alignmentleft
\lambda_e({\bf r}) =\lambda_e(z)

where 

LaTeX Math Inline
bodyz
 is true vertical depth.

Since the  heat flux is conservative (see

LaTeX Math Block Reference
anchorrot_j
pageGeothermal Temperature Field @model
) then it immediately implies that:

LaTeX Math Block
anchor1
alignmentleft
{\bf j}=\{ j_x = {\rm const}, \, j_y = {\rm const} , \, j_z(z) \}

Further admitting that a surface temperature over the study area is constant: 

LaTeX Math Inline
bodyT_s(x,y) = \rm const
 one can see that lateral components of the heat flux are vanishing: 

LaTeX Math Block
anchorWS78A
alignmentleft
{ \bf j}(x,y,z) = \{ j_x = 0, \, j_y = 0 , \, j_z(z) \}


Normally there are no heat sources within a subsurface volume under study other than upward Earth's Heat Flux which means that true vertical component 

LaTeX Math Inline
bodyj_z(z) = j_z = \rm const
 is constant along true vertical direction. It varies across the Earth but local value is usually well known.

This simplifies the procedure of modelling a Geothermal Temperature Field 

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z \%7D
 to modelling of a Constant Areal Geothermal Temperature Profile along a given wellbore trajectory.

Outputs

LaTeX Math Inline
bodyT_G(t, l)

LaTeX Math Inline
bodyG_T(z)

Geothermal Temperature Gradient

LaTeX Math Inline
bodyH_n

Neutral Temperature Layer (NTL)

Inputs

...

LaTeX Math Inline
bodyH_N

...

Inputs

LaTeX Math Inline
bodyt

Astronomic time

LaTeX Math Inline
body\delta T_A

Annual average surface temperature variation based on weather reports

LaTeX Math Inline
bodyl

wellbore trajectory Measured Depth with reference to Earth's surface (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
bodyA_T

Period of annual temperature variation cycle:

LaTeX Math Inline
body--uriencoded--A_T = 1 \, %7B\rm year%7D

LaTeX Math Inline
bodyz(l)

Wellbore trajectory. True Vertical Depth Sub-Sea (TVDss)

LaTeX Math Inline
body\delta t_A

Time moment of annual highest temperature with respect to January 1

LaTeX Math Inline
bodyj_z

True vertical component of regional Earth's heat flux (usually 

LaTeX Math Inline
body--uriencoded--j_z = 25 \div 55 \ mW/m%5e2
)

LaTeX Math Inline
bodyt

Local Calendar Time

LaTeX Math Inline
body\delta T_A

Annual average surface temperature variation based on weather reports

LaTeX Math Inline
bodyz(l)

LaTeX Math Inline
bodyA_T

Period of annual temperature variation cycle:

LaTeX Math Inline
body--uriencoded--A_T = 1 \, %7B\rm year%7D

LaTeX Math Inline
bodyj_z

True vertical component of regional Earth's Heat Flux

LaTeX Math Inline
body\delta t_A

Time shift of annual highest temperature with respect to January 1

LaTeX Math Inline
bodyT_s

Local annual average surface temperature based on weather reports

LaTeX Math Inline
body\delta T_D

Daily average surface temperature variation based on weather reports

LaTeX Math Inline
body

--uriencoded--a_%7Ben%7D

Local average Thermal diffusivity of the soil between Earth's surface and NTL
T_sAnnual average surface temperature based on weather reports

LaTeX Math Inline
bodyD_T

Period of daily temperature variation cycle:

LaTeX Math Inline
body--uriencoded--A_D = 1 \, %7B\rm day%7D

LaTeX Math Inline
body

a

\lambda_e

Average Thermal diffusivity of the soil between Earth's surface and neutral layer

(z)

Subsurface Thermal Conductivity profile as function of TVDss

LaTeX Math Inline
body\delta t_D

Time
moment
shift of daily highest temperature
with respect to Midnight 00:00

LaTeX Math Inline
body\lambda_r(l)

Rock Thermal Conductivity along-hole profile
with respect to Midnight 00:00



LaTeX Math Inline
body--uriencoded--\delta T_%7B\rm cut%7D

Temperature measurement threshold (usually

LaTeX Math Inline
body--uriencoded--\delta T_%7B\rm cut%7D = 0.

001

01 \, %7B\rm °C%7D

...

where

...

LaTeX Math Inline

Neutral Layer

body

LaTeX Math Block
anchorz_N
alignmentleft
z_N = z_s + H_N
LaTeX Math Block
anchorH_N
alignmentleft
H_N = \sqrt{\frac{a_e \, A_T }{\pi}} \, \ln \frac{\delta T_A }{\delta T_{\rm cut} }
Below Neutral Temperature LayerAbove Neutral Temperature Layer

LaTeX Math Inline
bodyz > z_N

LaTeX Math Inline
bodyz < z_N

LaTeX Math Block
anchorT_g
alignmentleft
T_g(l) = T_n + \int_{z_n}^z G_T(z) dz

l

Measured Depth of wellbore trajectory with reference to Earth's surface (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
bodyz_s = z(l=0)

TVDss of the Earth's surface in a given location. In case the Earth's surface is at sea level then 

LaTeX Math Inline
bodyz_s = 0


Assumptions

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z = %7B\rm const%7D \%7D

LaTeX Math Inline
body\lambda_e(x,y,z) = \lambda_e(z)


Equations

LaTeX Math Inline
bodyz_s = z(l=0)

TVDss of the Earth's surface in a given location. In case the Earth's surface is at sea level then  LaTeX Math Inlinebodyz_s = 0fracj_}{\lambdae-z_s\frac{dT_g}{d z}= rAeee2pi \frac{t - \delta t_D}{D_T} + (z_s -z) \sqrt {\frac{\pi}{a_e \, D_T\right]
LaTeX Math Block
anchorT_z
alignmentleft
T_G(t, z) = T_s + \
int_{
z
_
s}^z G_T(z
) dz + T_Y(t, z) + T_D(t, z)



LaTeX Math Block
anchorG_T
alignmentleft
G_T(z) =
 
\frac{j_z}{\lambda_
e(z)}
LaTeX Math Block
anchorT_z
alignmentleft
T_
Y(t,z) = \delta T_A \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_
{en} \, A_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_A}{A_T} + (z_s -z) \sqrt {\frac{\pi}{a_
{en} \, A_T}} \, \right]
LaTeX Math Block
anchorT_z
alignmentleft
T_D(t,z) = \delta T_D \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_
{en} \, D_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_D}{D_T} + (z_s -z) \sqrt {\frac{\pi}{a_{en} \, 
D_T}} \
, \right]
Neutral Layer
LaTeX Math Block
anchorz_N
alignmentleft
z_n = z_s + H_n
LaTeX Math Block
anchorH_N
alignmentleft
H_n = \sqrt{\frac{a_{en} \, A_T }{\pi}} \, \ln 

where

\frac{\delta T_A }{\delta T_{\rm cut} }


See Also

...

Geology / Geothermal Temperature Field / Geothermal Temperature Profile

Geothermal Temperature Field @model ] [ Geothermal Temperature Gradient ]

Neutral Temperature Layer @model ]

References

...

Kasuda, T., and Archenbach, P.R. "Earth Temperature and Thermal Diffusivity at Selected Stations in the United States", ASHRAE Transactions, Vol. 71, Part 1, 1965.

GeothermalTemperatureProfile.xlsx


Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

J. H. Davis, D. R. Davis, Earth’s surface heat flux - London -2010.pdf

Georgios Florides, Soteris Kalogirou, Annual ground temperature measurements at various - Cyprus - 2014.pdf

...