Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

The most general Pump model is given as a function of volumetric the mass flowrate of on the intake

LaTeX Math Inline
body--uriencoded--p_%7B\rm in%7D
 and discharge pressure 
LaTeX Math Inline
body--uriencoded--p_%7B\rm out%7D
:

LaTeX Math Block
anchorpump_m
alignmentleft
\dot m  = M(p_{\rm out}, p_{\rm in})

It's often presented in terms of intake volumetric flowrate:

LaTeX Math Block
anchorpump_q
alignmentleft
q = q_{in} = \frac{\dot m}{\rho(p_{in})}  = \frac{M(p_{\rm out}, p_{\rm in})}{\rho(p_{in})}

where

LaTeX Math Inline
body\rho(p)

fluid density as a function of fluid pressure 

LaTeX Math Inline
bodyp


The electrical power consumption  

LaTeX Math Inline
body--uriencoded--\displaystyle W = \frac%7BdE%7D%7Bdt%7D
is given by:

...

LaTeX Math Inline
body\eta

pump efficiency


In most practical cases 
the pump  model the pump model 

LaTeX Math Block Reference
anchorpump_q
depends  depends on the diffference between  difference between intake and discharge pressure 
LaTeX Math Inline
body--uriencoded--p_%7B\rm out%7D - p_%7B\rm in%7D
 and called pump characteristic curve called Pump Characteristic Curve (see Fig. 1):

LaTeX Math Block
anchorKD0ZN
alignmentleft
q = q(p_{\rm out} - p_{\rm in})

Fig. 1.  Example of Pump Characteristic Curve as function of delta pressure .


A popular 
pump proxy model is given by the quadratic equation with 3 inputs (

LaTeX Math Inline
body--uriencoded--

...

\%7B q_%7B

...

'rf max%7D, \delta p_%7B\rm

...

max%7D, k_f \%7D
)A popular pump proxy model is given by quadratic equation:

LaTeX Math Block
anchorq_pump
alignmentleft
q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -1 + k_f +  \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p_{\rm out}- p_{\rm in})/\delta p_{\rm max}) \ } \, \right]
LaTeX Math Block
anchorq_pump
alignmentleft
p_{\rm out} = p_{\rm in} +  \delta p_{\rm max} \cdot \left[ 1+ 
(k_f -1 ) \cdot \frac{q}{q_{\rm max}} - k_f \cdot \left( \frac{q}{q_{\rm max}} \right)^2
 \right ]
LaTeX Math Block
anchorQ056T
alignmentleft
\eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 -  q/q_{\rm max})

where

LaTeX Math Inline
body--uriencoded--\delta p_%7B\rm max%7D

maximum pressure gain that pump can exert over the input pressure 

LaTeX Math Inline
bodyp_{\rm in}

LaTeX Math Inline
bodyq_{\rm max}

maximum flowrate that pump can produce

LaTeX Math Inline
bodyk_f \in [0,1]

total hydraulic pump friction (dimensionless)

LaTeX Math Inline
body\eta

pump efficiency efficiency

LaTeX Math Inline
body\eta_{\rm max}

maximum pump efficiency


Real pumps have non-constant

LaTeX Math Inline
bodyk_f =k_f(q)
friction coefficient which often modelled as a 3rd order polynomial and the overall real-pump model taking 6-inputs.


Many pumps can be normally adjusted by the variation of the working frequency which affects the maximum pump flowrate and maximum pressure gain as:

LaTeX Math Block
anchor1
alignmentleft
q_{\rm max} = q^*_{\rm max}  \cdot \frac{f}{f^*}
LaTeX Math Block
anchor1
alignmentleft
\delta p_{\rm max} = \delta p^*_{\rm max}  \cdot \left( \frac{f}{f^*} \right)^2

where

LaTeX Math Inline
body--uriencoded--q_%7B\rm max%7D

maximum intake flowrate at the working frequency 

LaTeX Math Inline
bodyf

LaTeX Math Inline
body--uriencoded--\delta p_%7B\rm max%7D

maximum pressure gain at the working frequency 

LaTeX Math Inline
bodyf

LaTeX Math Inline
bodyf

adjusted working frequency

LaTeX Math Inline
body--uriencoded--q%5e*_%7B\rm max%7D

maximum intake flowrate at the nominal frequency 

LaTeX Math Inline
body--uriencoded--f%5e*

LaTeX Math Inline
body--uriencoded--\delta p%5e*_%7B\rm max%7D

maximum pressure gain at the nominal frequency 

LaTeX Math Inline
body--uriencoded--f%5e*

LaTeX Math Inline
body--uriencoded--f%5e*

nominal frequency

See also

...

Natural Science / Engineering / Device / Pump

...