Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


A ratio between actual volumetric flowrate through the real orifice and volumetric flowrate  estimate through the ideal orifice:

LaTeX Math Block
anchorIG0TW
alignmentleft
C_d = \frac{q}{q_{\rm ideal}}

where

LaTeX Math Block
anchorq_ideal
alignmentleft
q_{\rm ideal}= \epsilon \cdot \frac{\pi d^2}{4} \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

LaTeX Math Inline
body\Delta p

pressure drop on the choke

LaTeX Math Inline
body\Delta p = p_{in} - p_{out}

LaTeX Math Inline
body\beta = \frac{d}{D}

orifice narrowing ratio

LaTeX Math Inline
bodyd

orifice diameter

LaTeX Math Inline
bodyD

pipe diameter 

LaTeX Math Inline
body\epsilon

expansion factor


The deviation from ideal estimation 

LaTeX Math Block Reference
anchorq_ideal
 arise from fluid friction with choke elements and possible flow turbulence.


The discharge coefficient 

LaTeX Math Inline
bodyC_d
 is a function of a choke narrowing ratio 
LaTeX Math Inline
body\beta
and Reynolds number 
LaTeX Math Inline
body{\rm Re}
 in the pipe:

LaTeX Math Block
anchorRGN2Q
alignmentleft
C_d = C_d(\beta, {\rm Re})

where

LaTeX Math Block
anchor3LALO
alignmentleft
{\rm Re} = \frac{v \cdot D}{\nu} = \frac{4 \, q}{\pi \, D \, \nu}

where

LaTeX Math Inline
body\nu

kinematic viscosity

LaTeX Math Inline
bodyv

cross-sectional average flow velocity in a pipe


It can be estimated for popular choke types or tabulated in laboratory.


The most popular engineering correlation covering various tapping arrangements is given by ISO5167:

LaTeX Math Block
anchor8W4JO
alignmentleft
C_d = 0.5961 + 0.0261 \cdot \beta^2 - 0.216 \cdot \beta^8 + 0.000521 \cdot \left( \frac{ 10^6 \, \beta }{ {\rm Re}} \right)^{0.7}


See also

...

Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Orifice Plate Expansion Factor @ model ]

Pipeline Engineering / Pipeline / Choke


Reference

...

ISO5167 – Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full

M J Reader-Harris and J A Sattary, THE ORIFICE PLATE DISCHARGE COEFFICIENT EQUATION - THE EQUATION FOR ISO 5167-1,  National Engineering Laboratory, East Kilbride, Glasgow, 1996

J E Gallacher, ORIFICE PLATE DISCHARGE COEFFICIENT EQUATION, Shell Pipe Line Corporatio, Paper 5.1, NORTH SEA FLOW MEASUREMENT WORKSHOP,  23-25 October 1990

Stolz,J.,"A Universal Equation for the Calculation of Discharge Coefficient  of Orifice Plates";, Proc. Flomeko 1978- Flow Measurement of Fluids,H. H. Dijstelbergenand E. A.Spencer(Eds), North-HollandPublishingCo.,Amsterdam(1978), pp 519-534


Show If
groupeditors


Panel
bgColorpapayawhip


Expand
titleEditor

https://neutrium.net/fluid_flow/discharge-coefficient-for-nozzles-and-orifices/

LaTeX Math Block
anchorC_D
alignmentleft
C_d = \frac{d_D}{d} + 0.3167 \cdot \left( \frac{d}{d_D} \right)^{0.6} + 0.025 \cdot \big [ \log {\rm Re} - 4 \big ]