@wikipedia


A ratio between actual volumetric flowrate through the real orifice and volumetric flowrate  estimate through the ideal orifice:

C_d = \frac{q}{q_{\rm ideal}}

where

q_{\rm ideal}= \epsilon \cdot \frac{\pi d^2}{4} \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

pressure drop on the choke

orifice narrowing ratio

orifice diameter

pipe diameter 

expansion factor


The deviation from ideal estimation  arise from fluid friction with choke elements and possible flow turbulence.


The discharge coefficient   is a function of a choke narrowing ratio  and Reynolds number  in the pipe:

C_d = C_d(\beta, {\rm Re})

where

{\rm Re} = \frac{v \cdot D}{\nu} = \frac{4 \, q}{\pi \, D \, \nu}

where

kinematic viscosity

cross-sectional average flow velocity in a pipe


It can be estimated for popular choke types or tabulated in laboratory.


The most popular engineering correlation covering various tapping arrangements is given by ISO5167:

C_d = 0.5961 + 0.0261 \cdot \beta^2 - 0.216 \cdot \beta^8 + 0.000521 \cdot \left( \frac{ 10^6 \, \beta }{ {\rm Re}} \right)^{0.7}


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Orifice Plate Expansion Factor @ model ]

Pipeline Engineering / Pipeline / Choke


Reference


ISO5167 – Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full

M J Reader-Harris and J A Sattary, THE ORIFICE PLATE DISCHARGE COEFFICIENT EQUATION - THE EQUATION FOR ISO 5167-1,  National Engineering Laboratory, East Kilbride, Glasgow, 1996

J E Gallacher, ORIFICE PLATE DISCHARGE COEFFICIENT EQUATION, Shell Pipe Line Corporatio, Paper 5.1, NORTH SEA FLOW MEASUREMENT WORKSHOP,  23-25 October 1990

Stolz,J.,"A Universal Equation for the Calculation of Discharge Coefficient  of Orifice Plates";, Proc. Flomeko 1978- Flow Measurement of Fluids,H. H. Dijstelbergenand E. A.Spencer(Eds), North-HollandPublishingCo.,Amsterdam(1978), pp 519-534




https://neutrium.net/fluid_flow/discharge-coefficient-for-nozzles-and-orifices/

C_d = \frac{d_D}{d} + 0.3167 \cdot \left( \frac{d}{d_D} \right)^{0.6} + 0.025 \cdot \big [ \log {\rm Re} - 4 \big ]