Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


Examples

...






In case of flow in a simple one-casing well completion (see Fig. 1) the HTC is defined by the following equation:

Expand
titleSingle-barrier Completion
LaTeX Math Block
anchorU
alignmentleft
\frac{1}{ d_{ci} \, U} =  \frac{1}{d_{ci} \, U_{ci}} + \frac{1}{\lambda_c} \ln \frac{d_c}{d_{ci}} + \frac{1}{\lambda_{\rm cem}} \ln \frac{d_w}{d_c} 

where

LaTeX Math Inline
bodyd_w = 2 \cdot r_w

wellbore diameter (with radius

LaTeX Math Inline
bodyr_w
)

Image Removed

LaTeX Math Inline
bodyd_c = 2 \cdot r_c

outer diameter of the casing (with outer radius

LaTeX Math Inline
bodyr_c
)

LaTeX Math Inline
body--uriencoded--d_%7Bci%7D = 2 \cdot r_%7Bci%7D

inner diameter of the casing (with inner radius

LaTeX Math Inline
body--uriencoded--r_%7Bci%7D
)

LaTeX Math Inline
bodyh_c = r_c - r_i

casing wall thickness

LaTeX Math Inline
body\lambda_c

thermal conductivity of the casing material

LaTeX Math Inline
body\lambda_{cem}

thermal conductivity of cement

LaTeX Math Inline
body\lambda

thermal conductivity of wellbore fluid 

LaTeX Math Inline
body--uriencoded--\displaystyle U_%7Bci%7D = \frac%7B\lambda%7D%7Bd_%7Bci%7D%7D \, %7B\rm Nu%7D_%7Bci%7D

heat transfer coefficient (HTC) between inner surface of the casing and moving fluid

LaTeX Math Inline
body{\rm Nu}_{ci}

Nusselt number for the moving wellbore fluid with account of its contact with inner surface of the casing

Fig. 1. Schematic of a typical multi-layer structure around single-barrier (casing) well completion Expand
titleDual-barrier Completion

In case of single-string well completion with flowing fluid in the annulus (see Fig. 3) the HTC is defined by the following equation:

LaTeX Math Block
anchorU
alignmentleft
\frac{1}{ d_{ti} \, U} = \frac{1}{d_{ti} \, U_{ti}} + \frac{1}{\lambda_t} \, \ln \frac{d_t}{d_{ti}} +
+ \frac{1}{\lambda_{a, \rm eff}} \ln \frac{d_{ci}}{d_t} +
\frac{1}{\lambda_c} \ln \frac{d_c}{d_{ci}} + \frac{1}{\lambda_{cem}} \ln \frac{d_w}{d_c} 

where

LaTeX Math Inline
bodyd_t = 2 \cdot r_t

outer radius of tubing (with outer radius

LaTeX Math Inline
bodyr_t
)

LaTeX Math Inline
body--uriencoded--d_%7Bti%7D = 2 \cdot r_%7Bti%7D

inner diameter of the tubing (with inner radius

LaTeX Math Inline
body--uriencoded--r_%7Bti%7D
)

LaTeX Math Inline
body--uriencoded--h_t = r_t - r_%7Bti%7D

tubing wall thickness

LaTeX Math Inline
bodyd_c = 2 \cdot r_c

outer radius of casing (with outer radius

LaTeX Math Inline
bodyr_c
)

LaTeX Math Inline
body--uriencoded--d_%7Bci%7D = 2 \cdot r_%7Bci%7D

inner diameter of the casing (with inner radius

LaTeX Math Inline
body--uriencoded--r_%7Bci%7D
)

LaTeX Math Inline
bodyh_c = r_c - r_i

casing wall thickness

LaTeX Math Inline
body\lambda_t

thermal conductivity of tubing material

LaTeX Math Inline
body\lambda

thermal conductivity of fluid moving through the tubing

LaTeX Math Inline
body--uriencoded--\lambda_%7Ba, \rm eff%7D = \lambda_a \cdot \epsilon_a

effective thermal conductivity of the annulus 

LaTeX Math Inline
body\epsilon_a

Natural Convection Heat Transfer Multiplier

LaTeX Math Inline
body\lambda_a

thermal conductivity of fluid in the annulus

LaTeX Math Inline
body--uriencoded--\displaystyle U_%7Bti%7D = \frac%7B\lambda%7D%7Bd_%7Bti%7D%7D \, %7B\rm Nu%7D_%7Bti%7D

heat transfer coefficient (HTC)
between inner surface of tubing and moving fluid


In case the annulus is filled with stagnant fluid the annulus fluid convection will be natural and the Convection Heat Transfer Multiplier 

LaTeX Math Inline
body\epsilon_a(\rm Ra)
  is a function of Rayleigh number 
LaTeX Math Inline
body\rm Ra
.

In case the annulus fluid is moving the annulus fluid convection will be forced and the Convection Heat Transfer Multiplier 

LaTeX Math Inline
body\epsilon_a
 can be approximated as:



...