Page tree


The near reservir zone across the well penetration is subject to damage under anthropogenic activity (like drilling or various types of reservoir invasion and treatment).

The extension of damaged zone is characterized by the damade radius  r_s

(1) r_w < r < r_s

where 

r_w

 well radius

The typical extension of the damage zone around wellbore is  0.1 \, \mbox{m} \leq r_s - r_w \leq 1 \, \mbox{m}.

The permeability of the damaged zone k_s can show an improvement  k_s > k  or deterioration k_s < k against the permeability of the far reservoir zone k:

(2) {\rm Permeability} = \begin{cases} k_s, & \mbox{if } r_w \leq r \leq r_s \\ k, & \mbox{if } r> r_s \end{cases}


This leads to adjustment to the pressure drop comparing to the case when the near-reservoir zone stays undamaged which is called Mechanical Skin

In general case to account for the effects of Mechanical Skin one has to perform a proper simulation of pressure drop against the damaged zone.

But in many practical cases the problem can be simplified by the radial composite approximation.

The pressure drop in radial flow across reservoir rim  r_1 \leq r \leq r_2 is:

(3) \Delta p = \frac{q}{2\pi\sigma}\ln\frac{r_2}{r_1}

where

q

volumetric flowrate

\sigma = \frac{k \cdot h}{\mu}

reservoir transmissibility


The pressure drop  \Delta p = p_e - p_{wf} between wellbore pressure  p_{wf} and formation pressure at the boundary of the drainage area  p_e is the sum of pressure drops inside and outside the damaged zone:

(4) \Delta p = p_e - p_{wf} = (p_e - p_s) + (p_s - p_{wf}) = \frac{q}{2\pi\sigma_s}\ln\frac{r_s}{r_w} + \frac{q}{2\pi\sigma}\ln\frac{r_e}{r_s}


The same pressure drop  \Delta p = p_e - p_{wf} can be expressed through the definition of mechanical skin-factor (Skin-factor (mechanical):1)as:

(5) \Delta p = p_e - p_{wf} = \frac{q}{2\pi\sigma} \left( \ln\frac{r_e}{r_w} + S \right)

Comparing  (4) and  (5):

(6) \frac{q}{2\pi\sigma} \left( \ln\frac{r_e}{r_w} + S \right) = \frac{q}{2\pi\sigma_s}\ln\frac{r_s}{r_w} + \frac{q}{2\pi\sigma}\ln\frac{r_e}{r_s}

which leads to

(7) \frac{1}{k} \left( \ln\frac{r_e}{r_w} + S \right) = \frac{1}{k_s}\ln\frac{r_s}{r_w} + \frac{1}{k}\ln\frac{r_e}{r_s}
(8) \ln\frac{r_e}{r_w} + S = \frac{k}{k_s}\ln\frac{r_s}{r_w} + \ln\frac{r_e}{r_s}
(9) S = \frac{k}{k_s}\ln\frac{r_s}{r_w} + \ln\frac{r_w}{r_s} =\left( \frac{k}{k_s} - 1 \right) \ln\frac{r_s}{r_w}


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing / Skin-factor (mechanical)







  • No labels