BUS – Build-up Survey

Conventional single-well testing is based on long-term monitoring of downhole pressure response to the step change in flow rate (usually shut-in or close-in).

SPT – Self-Pulse Testing

The single-well self-pulse test is based on long-term monitoring of downhole pressure response to the periodic rate step change (usually shut-in or close-in).

If flowrate

• formation pressure P_i

The primary hard data deliverables are:

- skin-factor S
- average transmissibility in drainage area σ
- time to reach the reservoir boundary t_e

The conditional deliverables from build-up survey would be:

The primary hard data deliverables are:

- formation pressure P_i
- skin-factor S
- near σ_{near} and far σ_{far} zone transmissibility
- near χ_{near} and far χ_{far} zone pressure diffusivity

Deliverables	Description	Non-BUS Input Parameters	Key ● Uncertainties	time to rea	ach the reservoir	boundary t_e	
(1) $V_o = \frac{4}{r}$ where c_t is total compressibility: (2) $c_t = c_r$ and $\{c_r, c_o c_w\}$ are rock, oil and water compressibility.	$\sigma t_e (1 - s_{wi})$ Drainable oil reserves $+ (1 - s_{wi}) c_o + s_w$	The rock compressibilit y $c_r(\phi)$ is defined from core lab study or empirical porosity correlations Fluid compressibilit y { c_o, c_w } from PVT Initial water saturation s_{wi} from SCAL	The SI Rock design compressibility $c_r(\phi)$ • Initial water saturation s_{wi} • This all irectly based consect A_e , flu ith less Delive	PT is corre ed flowrate pressure i on formati time lag b response diffusivity lows estim from field s permeabil quently lea id mobility ser uncerta	lating pressure v e variation seque response amplitu ion transmissibili etween flowrate which depends of χ . hating effective for survey without as ity (compare with ds to assessing $\left\langle \frac{k}{\mu} \right\rangle$ and absor- ninties than in BL Description	variation with pre- ence and tracks: ude which depend ty σ variation and pre- production thickne ssumptions on c n (6)) and the drainange all plute permeability JS: Non-BUS Input	essure ss <i>h</i> d ore- rea y <i>k_a</i> w Key Uncert
						Parameters	

(3) $A_e = 4$, where χ is pressure	χ t _e Drainage area	Formation porosity ϕ	Absolute permeabi air k_a	(7) lity to	$h = \frac{\sigma}{\phi c_t}$	χ Effective reservoir thickness	Formation porosity ϕ	Rock comprest $c_r(\phi)$
(4) $\chi = \left\langle \frac{k}{\mu} \right\rangle$ where ϕ is reservoir porosity, $\left\langle \frac{k}{\mu} \right\rangle$ is fluid mobility: (5) $\left\langle \frac{k}{\mu} \right\rangle =$	$\frac{1}{\phi c_t} \frac{1}{\phi c_t}$ $k_a \left[\frac{k_{rw}}{k_r} + \frac{k_{ro}}{k_r} \right]$	Absolute permeability to air k_a from core study Relative permeabilitie s { k_{rw}, k_{ro} } fr om SCAL	Relative permeabi {k _{rw} , k _{ro} }	lities			Rock compressibilit y $c_r(\phi)$ Initial water saturation s_{wi} Fluid compressibilit	
k_a is absolute permeability to air,		Fluid viscosities $\{\mu_w, \mu_o\}$ from PVT		(8)	$A_e = \frac{4}{c}$	$\frac{\sigma t_e}{T_h}$	y $\{c_o, c_w\}$ Rock	Rock
k_{rw}, k_{ro} are re lative permeabilitie s to water and oil, μ_{w}, μ_{o} are wa ter and oil viscosities						area	compressibilit y $c_r(\phi)$ Initial water saturation s_{wi}	compres $c_r(\phi)$
$(6) h = \sigma \left\langle \right.$	$\left.\frac{k}{\mu}\right\rangle^{-1}$ #Effective reservoir thickness	Absolute permeability to air k_a from core study	Absolute permeabi air k_a	lity to			Fluid compressibilit y {c _o , c _w }	
		Relative permeabilitie s { k_{rw} , k_{ro} } from SCAL	Relative permeabi $\{k_{rw}, k_{ro}\}$	liti çs)	$\left\langle \frac{k}{\mu} \right\rangle =$	$\chi \phi c_t$ Fluid mobility	Rock compressibilit y $c_r(\phi)$	Rock compres $c_r(\phi)$
		Fluid viscosities $\{\mu_w, \mu_o\}$ from PVT					Initial water saturation s _{wi}	Initial wa saturatio
As one can see, thickness are co be representative	the drainage are nditioned by core e of the whole dr	ea and the reserve data which ma ainage area.	voir y not				Fluid compressibilit y {c _o , c _w }	

(10)	$k_a = \frac{1}{\left[\frac{k}{2}\right]}$	$\left< \frac{k}{\mu} \right>$ Absolute krow krow krow krow krow krow krow krow	Rock compressibilit y $c_r(\phi)$	Rock compres $c_r(\phi)$
			Initial water saturation s _{wi}	Initial wa saturatio
			Relative permeabilitie s { <i>k</i> _{rw} , <i>k</i> _{ro} }	Relative permeal $\{k_{rw}, k_{rc}\}$
			Fluid viscosities $\{\mu_w, \mu_o\}$	
			Fluid compressibilit y {c _o , c _w }	

The absoluite permeability from SPT $k_a|_{SPT}$ is usually stacked up against core-based permeability $k_a|_{CORE}$ to validate the core samples and assess the effects of macroscopic features which are overlooked at coreplug size level.

Running SPT in two different cycling frequences allows assessing the near and far resevroir zones spearately.

The usual SPT workflow includes several cycling tests with different frequencies, the lower the frequency the longer the scanning range.

This captures variation of permeability and thickness when moving away from well location.

Together with deconvolution, the SPT is reproducing conventional PTA information and providing additional data on pressure diuffusivity.

This maybe used as estimation of permeability and thickness separately and their variation away from well location.