Sonic Porosity

The sonic porosity is usually abbreviated **SPHI** or **PHIS** on log panels and denoted as ϕ_s in equations.

The key measurement is the p-wave velocity $V_{p log}$ from sonic tool readings.

The key model parameter is rock matrix sonic velocity $V_{p\,m}$ which is calibrated for each facies individually and can be can be assessed as vertical axis cut-off on $V_{p\,log}$ cross-plot against the core-data porosity ϕ_{air} .

The model also accounts for saturating rock fluids with p-wave velocity V_{pf} value.

In overbalance drilling across permeable rocks the saturating fluid is usually mud filtrate.

In underbalance drilling this the saturating fluid is identified from resistivity logs.

WGG Equation (Wyllie)

The **WGG** sonic porosity ϕ_s equation is :

(1)
$$\frac{1}{V_{p \log}} = \frac{1 - \phi_s C_p}{V_{p m}} + \frac{\phi_s C_p}{V_{p f}}$$

where C_p is compaction factor, accounting for the shaliness specifics and calculated as:

$$(2) C_p = \frac{V_{shc}}{V_{sh}}$$

where

 V_{sh} – p-wave velocity for adjacent shales,

 V_{shc} – p-wave velocity reference value for tight shales (usually 0.003 ft/s).

GGG Equation (Gardner, Gardner, Gregory)

The **GGG** sonic porosity ϕ_s equation is :

(3)
$$\frac{1}{V_{p \, log}^{1/4}} = \frac{(1 - \phi_s)}{V_{p \, m}^{1/4}} + \frac{\phi_s}{V_{p \, f}^{1/4}}$$

The above equation is based on the Gardner correlation for sonic density:

(4)
$$\rho_s = 171 \cdot V_{pm}^{1/4}$$

where ho_s is measured in $\left[\frac{\mathrm{m}^3}{\mathrm{kg}}\right]$ and $V_{p\,m}$ is measured in $\left[\frac{\mathrm{m}}{\mu\mathrm{s}}\right]$

and mass balance equation:

(5)
$$\rho_s = (1 - \phi_s)\rho_m + \phi_s \rho_f$$

RHG Equation (Raymer, Hunt, Gardner)

The **RHG** sonic porosity ϕ_s equation is :

(6)
$$V_{p log} = (1 - \phi_s)^2 V_{p m} + \phi_s V_{p f}$$

and only valid for $\phi_s < 0.37$.