Motivation



Inputs & Outputs


InputsOutputs

Cumulative Gas Cap expansion at surface conditions

Initial formation pressure

Instantaneous Gas Cap expansion flowrate at surface conditions

Initial Gas Cap reserves at surface conditions







Physical Model


Isothermal expansionUniform pressure depletion in Gas Cap



Mathematical Model



Q_{GC}(t) =  V_{GC} \cdot \left( 1- \frac{B_{gi}}{B_g(p)} \right) = V_{GC} \cdot \left( 1 - \frac{Z_i}{p_i} \, \frac{p}{Z(p)}  \right)
q_{GC}(t) = \frac{dQ_{GC}}{dt}

where

Proxy Models



Q_{GC}(t) = V_{GC} \, \left( 1 - \frac{p}{p_i}\right)
q_{GC}(t) =  -   \frac{V_{GC}\cdot p_i}{p^2(t)}\cdot
 \frac{d p}{dt}

In this case the only parameter of the gas cap model is its initial volume


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Gas Cap Drive

Depletion ] [ Saturated oil reservoir ] 


Low pressure depletion

Q^{\downarrow}_{GC}(t) = V_{gi} \cdot  \frac{\delta p(t)}{p_i} 
q^{\downarrow}_{GC}(t) =    \frac{V_{gi}}{p_i}\cdot
 \frac{d p}{dt}

When pressure depletion is not strong  then compressibility factor maybe considered as relatively constant :

\delta Z = \dot Z \, \delta p \sim 0

which leads to:

Q^{\downarrow}_{GC}(t) = V_{gi} \cdot \left( \frac{Z}{p} \cdot \frac{p_i}{Z_i} - 1 \right) = V_{gi} \cdot \left( \frac{p_i}{p} - 1 \right) = V_{gi} \cdot \left( \frac{p_i}{p_i - \delta p} - 1 \right) = V_{gi} \cdot \left( \frac{1}{1 - \frac{\delta p}{p_i}} - 1 \right) \approx V_{gi} \cdot \left( 1 + \frac{\delta p}{p_i} - 1 \right) = V_{gi} \cdot  \frac{\delta p(t)}{p_i}