Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Consider a system of net hydrocarbon pay and finite or infinite volume Aquifer as a radial composite reservoir with inner composite area being a Net Pay Area and outer composite area an Aquifer

(see schematic and notations on Fig. 1 at Radial VEH Aquifer Drive @model).

The Aquifer's outer boundary may be "no-flow" for finite-volume Aquifer or constant pressure for infinite-volume Aquifer.

The transient pressure diffusion in the outer (Aquifer) composite area is going to honour the following equation:

Driving equationInitial condition

Homogeneous Aquifer reservoir with

LaTeX Math Inline
body\chi(r)= \rm const

Initial Aquifer pressure is considered to be the same as Net Pay Area

...

borderColorwheat
borderWidth10

123

...


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]
LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



Inner Aquifer boundaryOuter Aquifer boundary is one of the two below:
Pressure variation at the contact with Net Pay Are"No-flow" "Constant pressure" 
LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)
LaTeX Math Block
anchor

...

p_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0
LaTeX Math Block
anchorpconst
alignmentleft
 p_a(t, r = \infty) = 0


Consider

...

dimensionless solution 

LaTeX Math Inline
bodyp_1(t_D, r_D)
of the following equation:

LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}
LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1
LaTeX Math Block
anchorgradp
alignmentleft
\frac{\partial p_1(t_D, r_D)}{\partial r_D} 
\Bigg|_{r_D=r_{aD}} = 0 \quad {\rm or} \quad  p_1(t_D, r_D = \infty) = 0

which represents a unique function of dimensionless time

LaTeX Math Inline
bodyt_D
and distance
LaTeX Math Inline
bodyr_D
.


Now consider a convolution integral:

LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau
LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}


One can easily check that

LaTeX Math Block Reference
anchorVEHP

...

honours the whole set of equations

LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchor

...

p_PSS
/
LaTeX Math Block Reference
anchorpconst
and as such defines a unique solution of the above problem.

...

Now having the pressure dynamics in hand one can calculate the water influx.

The water flowrate within

LaTeX Math Inline
body\theta
sector angle at the interface with

...

net pay is:

1
LaTeX Math Block
anchor
2UL1F
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at

...

Net Pay ↔ Aquifer contact boundary, which is:

1
LaTeX Math Block
anchor
REO0C
alignmentleft
u(t,r_e) = M \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


where

LaTeX Math Inline
body--uriencoded--\displaystyle M = \frac%7Bk_w%7D%7B\mu_w%7D
is

...

Aquifer mobility.

...


The water flowrate is going to be:

1
LaTeX Math Block
anchor
5G6H1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot M \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
Cumulative

and cumulative water flux is going to be:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h \cdot M  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Substituting

LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block Reference
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot r_e \cdot h \cdot M  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau

\right]_{r=r_e}  
1
LaTeX Math Block
anchor
8QPZU
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r_D} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \, \dot p(\tau) d\tau

\right]_{r_D=1}   
1
LaTeX Math Block
anchor
K62ZP
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\xi \   

\int_0^\xi \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

   

The above integral represents the integration over the

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane (see Fig. 1):

1
LaTeX Math Block
anchor
4D9M2
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \iint_D d\xi \ d\tau  \, \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

   

Image Modified

Fig. 1. Illustration of the integration

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane



Changing the integration order from

LaTeX Math Inline
body\tau \rightarrow \xi
to
LaTeX Math Inline
body\xi \rightarrow \tau
leads to:

1
LaTeX Math Block
anchor
11ECZ
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\tau \int_\tau^t d\xi  \ \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 
= 
 \theta  \cdot h \cdot M  \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi  \ 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

Replacing the variable:

1
LaTeX Math Block
anchor
FWPWN
alignmentleft
\xi = \tau + \frac{r_e^2}{\chi} \cdot t_D \rightarrow t_D = \frac{(\xi-\tau)\chi}{r_e^2} \rightarrow d\xi = \frac{r_e^2}{\chi} \cdot dt_D

and

...

cumulative influx becomes:

1
LaTeX Math Block
anchor
A0R6C
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M \cdot \frac{r_e^2}{\chi} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D = B \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D

where

LaTeX Math Inline
bodyB
is water influx constant and which leads to:

-ref and
LaTeX Math Block
anchorVEH
LaTeX Math Block Reference
anchorWeD
.qwe
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD} \left( \frac{(t-\tau)\chi}{r_e^2}\right) \dot p(\tau) d\tau

where

LaTeX Math Block
anchorWeD
alignmentleft
W_{eD}(t) = \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 

is a unique dimensionless function of dimensionless time

LaTeX Math Inline
bodyt_D
which can be tabulated via numerical solution or approximated by closed-form expression.


See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models / Radial VEH Aquifer Drive @model