Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


In many subsurface applications which require the knowledge of subsurface temperature distributions the land area of the study is small enough to consider the subsurface 
heat flux  

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B j_x, \, j_y, \, j_z \%7D
 to be independent on areal location:  
LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) =%7B \bf j%7D(z)
. 

Further admitting that lateral inhomogeneity with the study area is not high the Thermal Conductivity is going to be a function of depth only Thermal Conductivity which leads to vanishing lateral components of the heat flux and vanishing lateral components

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B j_x = 0, \, j_y = 0 , \, j_z(z) \%7D
.

Normally there are no heat sources within a subsurface volume under study other than upward Earth's Heat Flux which means that true vertical component 

LaTeX Math Inline
bodyj_z(z) = j_z = \rm const
 is constant along true vertical direction. It varies across the Earth but local value is usually well known.

This simplifies the procedure of modelling the Geothermal Temperature Field 

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z \%7D
 along a given wellbore trajectory.

...

LaTeX Math Inline
bodyt

Local Calendar Time

LaTeX Math Inline
body\delta T_A

Annual average surface temperature variation based on weather reports

LaTeX Math Inline
bodyz(l)

LaTeX Math Inline
bodyA_T

Period of annual temperature variation cycle:

LaTeX Math Inline
body--uriencoded--A_T = 1 \, %7B\rm year%7D

LaTeX Math Inline
bodyj_z

True vertical component of regional Earth's Heat Flux

LaTeX Math Inline
body\delta t_A

Time shift of annual highest temperature with respect to January 1

LaTeX Math Inline
bodyT_0

Local annual average surface temperature based on weather reports

LaTeX Math Inline
body\delta T_D

Daily average surface temperature variation based on weather reports

LaTeX Math Inline
bodya_e

Local average Thermal diffusivity of the soil between Earth's surface and NTL

LaTeX Math Inline
bodyD_T

Period of daily temperature variation cycle:

LaTeX Math Inline
body--uriencoded--A_D = 1 \, %7B\rm day%7D

LaTeX Math Inline
body\lambda_r(z)

Subsurface Thermal Conductivity profile as function of TVDss

LaTeX Math Inline
body\delta t_D

Time shift of daily highest temperature with respect to Midnight 00:00



LaTeX Math Inline
body--uriencoded--\delta T_%7B\rm cut%7D

Temperature measurement threshold (usually

LaTeX Math Inline
body--uriencoded--\delta T_%7B\rm cut%7D = 0.01 \, %7B\rm °C%7D

where

LaTeX Math Inline
bodyl

wellbore trajectory Measured Depth with reference to Earth's surface (

LaTeX Math Inline
bodyl=0
)


Assumptions

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z = %7B\rm const%7D \%7D

LaTeX Math Inline
body\lambda(x,y,z) = \lambda(z)


Equations

Neutral Layer


LaTeX Math Block
anchorz_N
alignmentleft
z_n = z_s + H_n



LaTeX Math Block
anchorH_N
alignmentleft
H_n = \sqrt{\frac{a_e \, A_T }{\pi}} \, \ln \frac{\delta T_A }{\delta T_{\rm cut} }


Below Neutral Temperature LayerAbove Neutral Temperature Layer

LaTeX Math Inline
bodyz > z_n

LaTeX Math Inline
bodyz < z_n


LaTeX Math Block
anchorT_g
alignmentleft
T_G(l) = T_s + \int_{z_s}^z G_T(z) dz



LaTeX Math Block
anchorT_z
alignmentleft
T(t, z) = T_0 + \frac{j_z}{\lambda_e} (z-z_s) + T_Y(t, z) + T_D(t, z)



LaTeX Math Block
anchorG_T
alignmentleft
G_T(z) =\frac{d T_g}{d z}= \frac{j_z}{\lambda_r}



LaTeX Math Block
anchorT_z
alignmentleft
T_Y(t,z) = \delta T_A \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_e \, A_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_A}{A_T} + (z_s -z) \sqrt {\frac{\pi}{a_e \, A_T}} \, \right]




LaTeX Math Block
anchorT_z
alignmentleft
T_D(t,z) = \delta T_D \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_e \, D_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_D}{D_T} + (z_s -z) \sqrt {\frac{\pi}{a_e \, D_T}} \, \right]


...