Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


Two different functions of real argument 

LaTeX Math Inline
bodyx \in \mathbb{R}
are called this way:


LaTeX Math Block
anchorEi
alignmentleft
{\rm Ei}(x) = - \int_{-x}^{\infty} \frac{e^{-\xi}}{\xi} \, d\xi



LaTeX Math Block
anchorE1
alignmentleft
{\rm E_1}(x) = \int_{x}^{\infty} \frac{e^{-\xi}}{\xi} \, d\xi


which are related to each other as:

LaTeX Math Block
anchor2KSEE
alignmentleft
{\rm Ei}(x) = - E_1(-x)

There is a trend to moving from 

LaTeX Math Inline
body\rm Ei
 definition (which was dominating in the past) towards  
LaTeX Math Inline
body\rm E_1
 which becomes more and more popular nowdays.


Fig. 1. A sample graph of

LaTeX Math Inline
bodyy ={\rm Ei}(x)


Properties




LaTeX Math Block
anchor1
alignmentleft
{\rm Ei}(0)  = -\infty



LaTeX Math Block
anchor1
alignmentleft
{\rm Ei}(-\infty)  = 0



LaTeX Math Block
anchor1
alignmentleft
{\rm Ei}(+\infty)  = +\infty



LaTeX Math Block
anchorderEi
alignmentleft
\frac{d }{dx}{\rm Ei}(x) = \frac{e^x}{x}



Approximations



LaTeX Math Inline
body|x| \ll 1

LaTeX Math Inline
body|x| \gg 1


LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) = \gamma + \ln |x| + \sum_{k=1}^\infty \frac{x^k}{k\cdot k!}



LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) = e^x \, \left[ \frac{1}{x} + \sum_{k=2}^\infty \frac{(k-1)!}{x^k} \right]


where 

LaTeX Math Inline
body\gamma = 0.57721
... is Euler–Mascheroni constant




LaTeX Math Inline
body-1 \ll -x <0

LaTeX Math Inline
body0 < x \ll 1


LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(-x) \sim \gamma + \ln x



LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) \sim \gamma + \ln x 



Application



The real-value positive function 

LaTeX Math Inline
body{\rm w}(t,r)
of two real-value positive arguments (time 
LaTeX Math Inline
bodyt
and radial coordinate
LaTeX Math Inline
bodyr
):

LaTeX Math Block
anchorw
alignmentleft
 {\rm w}(t, r) = E_1 \left( \frac{r^2}{4 t} \right) = -{\rm Ei} \left( - \frac{r^2}{4 t} \right)

defines a solution of planar axial-symmetric diffusion equation with homogenous initial and boundary conditions


LaTeX Math Block
anchordiff
alignmentleft
\frac{\partial {\rm w}}{\partial t} = \frac{\partial^2 {\rm w}}{\partial r^2} + \frac{1}{r} \frac{\partial {\rm w}}{\partial r}



LaTeX Math Block
anchort0
alignmentleft
{\rm w}(t=0, r) = 0



LaTeX Math Block
anchorrinf
alignmentleft
{\rm w}(t, r=\infty) = 0



LaTeX Math Block
anchorwpos
alignmentleft
0 <= {\rm w}(t, r) < \infty \, , \ \forall (t,r) \in  D = \{ t \geq 0, r>0  \} 
 \subset \mathbb{R} 


and is widely used in radial heat-mass transfer simulations.


References


https://www.wolframalpha.com/input/?i=Ei(x)

Masina, Enrico. (2017). A review on the Exponential-Integral special function and other strictly related special functions. Lectures from a seminar of Mathematical Physics.

Show If
grouparax


Panel
bgColorpapayawhip
titleARAX

https://www.dropbox.com/s/4hijnldvyhsx0bz/Enrico%20Masina%2C%20A%20review%20on%20the%20Exponential-Integral%20special%20function%20and%20other%20strictly%20related%20special%20functions.pdf?dl=0