Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


Two different functions of real argument 

LaTeX Math Inline
bodyx \in \mathbb{R}
are called this way:


LaTeX Math Block
anchorEi
alignmentleft
{\rm Ei}(x) = - \int_{-x}^{\infty} \frac{e^{-\xi}}{\xi} \, d\xi



LaTeX Math Block
anchorE1
alignmentleft
{\rm E_1}(x) = \int_{x}^{\infty} \frac{e^{-\xi}}{\xi} \, d\xi


which are related to each other as:

LaTeX Math Block
anchor2KSEE
alignmentleft
{\rm Ei}(x) = - E_1(-x)

There is a trend to moving from 

LaTeX Math Inline
body\rm Ei
 definition which was dominating in the past towards  
LaTeX Math Inline
body\rm E_1
.


Fig. 1. A sample graph of

LaTeX Math Inline
bodyy ={\rm Ei}(x)



Approximations



LaTeX Math Inline
body|x| \ll 1

LaTeX Math Inline
body|x| \gg 1


LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) = \gamma + \ln |x| + \sum_{k=1}^\infty \frac{x^k}{k\cdot k!}



LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) = e^x \, \left[ \frac{1}{x} + \sum_{k=2}^\infty \frac{(k-1)!}{x^k} \right]


where 

LaTeX Math Inline
body\gamma = 0.57721
... is Euler–Mascheroni constant




LaTeX Math Inline
body-1 \ll -x <0

LaTeX Math Inline
body0 < x \ll 1


LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(-x) \sim \gamma + \ln x



LaTeX Math Block
anchor2
alignmentleft
{\rm Ei}(x) \sim \gamma + \ln x 



Application




The 

LaTeX Math Inline
body\rm Ei
-based function:

LaTeX Math Block
anchorw
alignmentleft
 {\rm w}(t, r) = E_1 \left( \frac{r^2}{4 \,  t} \right) = -{\rm Ei} \left( - \frac{r^2}{4 \,  t} \right)

defines a solution planar axial-symmetric diffusion equation


LaTeX Math Block
anchordiff
alignmentleft
\frac{\partial {\rm w}}{\partial t} = \frac{\partial {\rm w}^2}{\partial^2 r} + \frac{1}{r} \frac{\partial {\rm w}}{\partial r}



LaTeX Math Block
anchort0
alignmentleft
{\rm w}(t=0, r) = 0



LaTeX Math Block
anchorrinf
alignmentleft
{\rm w}(t, r=\infty) = 0



LaTeX Math Block
anchorwpos
alignmentleft
0 <= {\rm w}(t, r) < \infty \, , \ \forall (t,r) \in  D = \{ t \geq 0, r>0  \} 
 \subset \mathbb{R} 


and is widely used in radial mass-heat transfer simulations.


References


https://www.wolframalpha.com/input/?i=Ei(x)