Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleDerivation


Panel
bgColorCornsilk


Transient flow in Radial Composite Reservoir:


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)



LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi_a}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

Water flowrate within

LaTeX Math Inline
body\theta
sector angle at interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at aquifer contact boundary, which is:

LaTeX Math Block
anchor1
alignmentleft
u(t,r_e) = M_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where

LaTeX Math Inline
bodyM_a = \frac{k_a}{\mu_w}
is aquifer mobility.

Water flowrate becomes:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot M_a \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

LaTeX Math Block
anchor1Qaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Substituting

LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block-ref
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) =  \theta  \cdot r_e \cdot h_a \cdot M_a  \cdot   \int_0^t d\xi \  \frac{1\partial }{\partial r_e} \frac{\partialleft[  

\int_0^\xi p_a(t1 \cdotleft( \frac{r_e^2}{\chi_a},R_E \cdot r_D)}{\partial r_D} \bigg|(\xi-\tau)\chi_a}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau

\right]_{r=r_e}  \frac{r_e^2}{\chi_a} dt_D 


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  r_e^2 \cdot h_a \cdot cM_ta \phi  \cdot \int_0^t d\xi \  \frac{\partial }{\partial p_a(t \cdot \frac{r_e^2}{r_D} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi_a},{r_e \cdote^2}, r_D)}{\partial r_D} \bigg| \right) \, \dot p(\tau) d\tau

\right]_{r_D=1}   dt_D = B


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \   

\int_0^\xi \frac{\partial p_a(t \cdot_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

   

The above integral represents the integration over the

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane (see Fig. 1):

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \iint_D d\xi \ d\tau  \, \dot p(\tau) 

\frac{\partial p_1\chi_a},r_e \cdot r_D)}{\partial r_D} \bigg\left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1}  dt_D 

   



Fig. 1. Illustration of the integration

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane



Changing the integration order from

LaTeX Math Inline
body\tau \rightarrow \xi
to
LaTeX Math Inline
body\xi \rightarrow \tau
Substituting
LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block Reference
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq11
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot rh_e^2a \cdot hM_a  \cdot c\int_t0^t d\tau \int_\cdottau^t d\phixi  \cdot \int_0^t  \left[dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \int_0^{t} p_a(t \cdot \frac{r_e^2}{\chi_a},r_e \cdot r_D)frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 
= 
 \theta  \cdot h_a \cdot M_a  \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi  \ 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right]) \Bigg|_{r_D=1} dt_D 






See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

...