Page tree

Shaliness from GR


The shales contain much higher concentration of radioactive minerals comparing to clean sands and carbonates (see Table 1 below).

This is why the most common way to quantify the shale content is the intensity of the natural gamma-ray (GR) emission.

The fist step is to normalize the actual GR-tool readings  GR_{log} to the reference values in clean rocks   GR_m and pure shales  GR_{sh} which is called Shale Index

(1) I_{GR}(l) = \frac{GR_{log}(l) - GR_m}{GR_{sh} - GR_m}

where  l – along-hole depth.

The model parameters  GR_{sh}  and   GR_m  are calibrated for each lithofacies individually.

The Shale Index  I_{GR} is varying between 0 (for non-shally rocks) and 1 (for pure shales) but the actual shaliness may behave non-linearly between these extremes (especially for shallow, young reservoirs). 

This can be calibrated based on the available core data.


The table below summarises some popular shaliness models:

#EquationAuthorRock TypeCorrelation database
1

V_{sh} = I_{GR}




2

V_{sh} = 0.083 \cdot (2^{3.7 I_{GR}} - 1)

Larionov (1969)Tertiary Jurassic rocksWest Siberia
3

V_{sh} = 1.7 - \sqrt{(3.38 - (I_{GR}+0.7)^2)}

Clavier (1971)

4


V_{sh} = \frac{ I_{GR}}{3 - 2 I_{GR}}

Stieber (1970)



5

V_{sh} = 0.33 \cdot (2^{2 I_{GR}} - 1)

Larionov (1969)Older RocksWest Siberia





The graphic image of different shales volume models is brought on Fig. 1.



Table 1. Typical GR values for popular minerals

Rock TypeGR, GAPI
1Halite (Rock Salt)0
2Coal0
3Limestone5 – 10
4Sandstone10 – 20
5Dolomite10 – 20
6Shale80 – 140
7Mica100 – 170
8Sylvite (KCl)500

Fig. 1. Different shales volume models


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petrophysics / Reservoir Data Logs (RDL) @model

References


  • No labels