Page tree

Mathematical model of Heat Transfer Coefficient through the annulus gap between concentric pipes filled with fluid:

(1) U = \frac{\lambda_{ann}}{d_h} \, {\rm Nu}_{ann}

where

\lambda_{ann}

thermal conductivity of fluid in the annulus

d_{ann}

annular hydraulic diameter

{\rm Nu}_{ann}

dimensionless Nusselt number (Nu)


The Nusselt number (Nu) correlations are:

Stagnant fluidNatural ConvectionForced Convection
OEIS sequence A282581
J. DIRKER & J. P. MEYER
(2) {\rm Nu}=3.6568
(3) {\rm Nu} = \frac{2 \cdot \epsilon({\rm Ra})}{\ln (r_{out}/r_{in})}
(4) {\rm Nu}= c \cdot \mbox{Re}_D^p \cdot \mbox{Pr}^{0.4}\cdot \left( \frac{\mu}{\mu_w} \right)^{0.14}


wherewhere


\mbox{Re}

 Reynolds number 

\epsilon({\rm Ra})

Natural Convection Heat Transfer Multiplier 

\mbox{Pr} = \nu / a

{\rm Ra}

Rayleigh number 

\nu



a

thermal diffusivity


r_{out}

inner radius of outer pipe


r_{in}

outer radius of inner pipe


\zeta = r_{out}/r_{in}





p = 1.013 \cdot\exp \left[ -0.067 \cdot \zeta \right]



\displaystyle c = \frac{0.03 \, \zeta^{1.86}}{0.063 \, \zeta^3 -0.674 \, \zeta^2 +2.225 \, \zeta - 1.157 }


See also


Physics / Thermodynamics / Heat Transfer /  Heat Transfer Coefficient (HTC) / Heat Transfer Coefficient (HTC) @model

Thermal conductivity ] [ Nusselt number (Nu) ]


Reference


J. DIRKER & J. P. MEYER (2005) Convective Heat Transfer Coefficients in Concentric Annuli, Heat Transfer Engineering, 26:2, 38-44, DOI: 10.1080/01457630590897097

  • No labels