Dual Water Model (DW) @model One of the saturation from resistivity models. The dual-water model accounts for the fact that different shales have different shale-bound water saturation $s_{wb} = \frac{V_{wb}}{V_t}$: $$\phi_t = \phi_e + \phi_t s_{wb}$$ so that formation water saturation s_w is related to total water saturation $s_{wt} = \frac{V_{wb} + V_w}{V_t}$ as: $$s_w = \frac{s_{wt} - s_{wb}}{1 - s_{wb}}$$ Rock volume V is a sum of rock matrix volume V_m and total pore volume V_t : $$V = V_m + V_t = (1 - \phi_t)V + \phi_t V$$ where $$\phi_t = \frac{V_t}{V}$$ Total pore volume V_t is a sum of shale-bound water V_{wb} and free fluid volume V_e (water and hydrocarbons): $$V_t = \phi_t V = V_e + V_{wb} = \phi_e V + s_{wb} V_t$$ where $$V_e = V_t(1 - s_{wb})$$ and therefore: $$\phi_e = \phi_t (1 - s_{wb})$$ Total volume of water is a sum of shale-bound water V_{wb} and free water V_{wf} : $$V_{wt} = V_{wb} + V_{wf}$$ and relates to V_t as: $$s_{wt}V_t = s_{wb}V_t + s_wV_e = s_{wb}V_t + s_wV_t(1 - s_{wb})$$ 0 $$s_{wt} = s_{wb} + s_w(1 - s_{wb})$$ which gives an explicit formula for formation water saturation: $$s_w = \frac{s_{wt} - s_{wb}}{1 - s_{wb}}$$ Formation resistivity R_t is given by the following correlation: $$\frac{1}{R_t} = \phi_t^m s_{wt}^n \left[\frac{1}{R_w} + \frac{s_{wb}}{s_{wt}} \left(\frac{1}{R_{wb}} - \frac{1}{R_w} \right) \right] \quad \Rightarrow \quad s_w = \frac{s_{wt} - s_{wb}}{1 - s_{wb}}$$ where | $s_{wb} = \frac{V_{wb}}{V_t}$ | shale-bound water saturation | |-------------------------------------|--| | $s_{wt} = \frac{V_{wb} + V_w}{V_t}$ | total water saturation (shal-bound water and free-water) | R_{wb} specific electrical resisitvity of shale-bound water In simple case when all shales have the same properties, the shale-bound water saturation can be expressed through the shaliness as: $$(1) s_{wb} = \zeta_{wb} V_{sh}$$ | s_w | formation water saturation | | |----------|---|---| | s_{wb} | bound water saturation | | | ϕ_e | effective porosity | | | V_{sh} | shaliness | | | R_t | total measured resistivity from OH logs | | | R_w | formation water resistivity | | | R_{sh} | wet clay resistivity | | | A | dimensionless constant, characterising the rock matrix contribution to the total electrical resistivity | 0.5 ÷ 1, default value is 1 for sandstones and 0.9 for limestones | | m | formation matrix cementation exponent | 1.5 ÷ 2.5, default value is 2 | | n | formation matrix water-saturation exponent | 1.5 ÷ 2.5, default value is 2 | In some practical cases, the clay resisitvity R_{sh} can be expressed as: $$\frac{1}{R_{sh}} = B \cdot Q_V$$ where | В | conductance per cat-ion (mho · cm²/meq) | |-------|---| | Q_V | Cation Exchange Capacity (meq/ml) | and both can be measured in laboratory. The other model parameters still need calibration on core data. ## See Also Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petrophysics Well & Reservoir Surveillance / Well logging / Reservoir Data Logs (RDL) / Formation Resistivity Log @model