Neutron Porosity Part of rock volume containing the hydrogen atoms. The neutron porosity is usually abbreviated **NPHI** or **PHIN** on log panels and denoted as ϕ_n in equations. The key measurement is compensated neutron log N_{log} (log name CNL) from Compensated Neutron Tool. The key model parameters are: | N_m | rock matrix CNL | |---------------------|--| | N_{sh} | shale CNL | | N_f | pore-saturating fluid CNL | | N_{mf} | mud filtrate CNL | | $\{N_w,N_o,N_g\}$ | formation water, oil, gas CNL | | S_{XO} | a fraction of pore volume invaded by mud filtrate | | $\{s_w, s_o, s_g\}$ | original water, oil, gas reservoir saturations $s_w + s_o + s_g = 1$ | The values of N_m and N_{sh} are calibrated for each lithofacies individually and can be assessed as vertical axis cut-off on N_{log} cross-plot against the lab core porosity ϕ_{air} and shaliness V_{sh} . The model also accounts for saturating rock fluids with fluid CNL value N_f . In overbalance drilling across permeable rocks the saturating fluid is usually mud filtrate. In underbalance drilling the saturating fluid is identified from resistivity logs. The **total neutron porosity** ϕ_n equation is: $$\phi_n = \frac{N_{log} - N_m}{N_f - N_m}$$ The **effective neutron porosity** ϕ_{en} equation is: (2) $$\phi_{en} = \phi_n - \frac{N_{sh} - N_m}{N_f - N_m} \cdot V_{sh}$$ The fluid density N_f is calculated in-situ using the following equation: (3) $$N_f = s_{xo} N_{mf} + (1 - s_{xo})(s_w N_w + s_o N_o + s_g N_g)$$ The matrix CNL is calculated from the following equation: $$(4) N_m = \sum_i V_{m,i} N_{m,i}$$ where $V_{m,i}$ —volume share of the $\emph{i-}$ th matrix component, $N_{\it m,i}$ — density of the $\it i$ -th matrix component, $$\sum_{i} V_{mi} = 1$$.