\mu_w(T, p) = \mu_{w0}(T, p) \cdot \mu_r(T, m)
\ln \mu_{w0}(T, p) = \sum_{n = 1}^5 \, d_n \cdot T^{n-3} + \rho_w(T, p) \cdot \sum_{n = 6}^{10} \, d_n \, T^{n-8}
\ln \mu_r(T, m) = A \cdot m + B \cdot m^2 + C \cdot m^3
 A = a_0 + a_1 \, T + a_2 \, T^2



 B = b_0 + b_1 \, T + b_2 \, T^2
 C = c_0 + c_1 \, T 
 m = \frac{1,000 \cdot S}{M_{\mbox{NaCl}} \cdot (1-S)}


where

 

Dynamic viscositycp at temperature and pressure

Pure water density (at Salinity = 0)

 

Temperature, °F 

 

Pressure, psi 

Water salinity, frac

Salt concentration, g-mol/kg

and

 

0.28853179 · 107

-0.21319213

-0.11072577E5


0.13651589E-2

-0.90834095E1


0.12191756E 5

0.30925651E-1



-0.27407100E-4


0.69161945E-1

-0.19283851E7


0.27292263E 3

0.56216046E4

0.20852448E-6

0.13827250E2

0.47609523E-1

0.25988855E-2

0.35545041E-4

0.77989227E-5

See Also


Petroleum Industry / Upstream / Petroleum Engineering / Subsurface E&P Disciplines / Reservoir Engineering (RE) / PVT correlations / PVT Water correlations / Water viscosity correlations