Arrhenius


0 variables

\ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 +  x_2  \cdot \ln {\mu}_2 


Lederer-Roegiers


1 variable

\ln {\mu}_{12} = \frac{x_1}{x_1 + \alpha \, x_2} \cdot \ln {\mu}_1 +  \frac{\alpha \, x_2}{x_1 + \alpha \,x_2}  \cdot \ln {\mu}_2 


1 variable

\ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2


Oswal-Desai


3 variables

\ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2 + K_1 \, x_1 \, x_2 \, (x_1 - x_2) + K_2 \, x_1 \, x_2 \, (x_1 - x_2)^2


Kendall-Monroe


0 variables

{\nu}_{12}^{1/3} = x_1 \cdot \nu_1^{1/3} + x_2 \cdot \nu_2^{1/3}


The Lederer-Roegiers equation is reported to be the most accurate among single-variable models.

See also


Physics / Fluid Dynamics / Mixing Rules

References


Boris Zhmud, Viscosity Blending Equations, Lube-tech, 121, 2014


Boris Zhmud, Viscosity Blending Equations, Lube-tech, 121, 2014