\dot m = \sum_\alpha \dot m_\alpha


A = \sum_\alpha A_\alpha


\sum_\alpha s_\alpha = 1


u_m = \sum_\alpha s_\alpha \cdot \dot u_\alpha


q_\alpha = \dot m_\alpha / \rho_\alpha = A_\alpha \, u_\alpha \Rightarrow \dot m_\alpha = \rho_alpha \, A_\alpha \, u_\alpha 


s_\alpha =  \frac{\dot m_\alpha}{\rho_\alpha \, u_\alpha} \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta \, u_\beta} \right)^{-1}



For homogeneous pipe flow:  and volumetric shares are going to be:

s_\alpha =  \frac{\dot m_\alpha}{\rho_\alpha \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta} \right)^{-1}



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation

Pipe ] [ Pipeline ] [ Pipeline Engineering ]


s_\alpha = A_\alpha/A