Outputs

phase holdup

phase volumetric flowrate


Inputs

pipe cross-sectional area

phase mass flowrates

phase densities


Solver

s_\alpha =  \frac{\dot m_\alpha}{\rho_\alpha \, u_\alpha} \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta \, u_\beta} \right)^{-1}
q_\alpha = s_\alpha \, u_\alpha \, A 


Derivation

Given the multiphase flow of  phases:  and mass flowrates 

\dot m = \sum_\alpha \dot m_\alpha
A = \sum_\alpha A_\alpha
s_\alpha = A_\alpha/A 
\sum_\alpha s_\alpha = 1
u_m = \sum_\alpha s_\alpha \cdot \dot u_\alpha
q_\alpha = \dot m_\alpha / \rho_\alpha = A_\alpha \, u_\alpha \Rightarrow \dot m_\alpha = \rho_\alpha \, A_\alpha \, u_\alpha 




For homogeneous pipe flow:  and volumetric shares are going to be:

s_\alpha =  \frac{\dot m_\alpha}{\rho_\alpha} \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta} \right)^{-1}



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation

Pipe ] [ Pipeline ] [ Pipeline Engineering ]