The most general Pump model is given as a function of volumetric flowrate of the intake  and discharge pressure :

q = q(p_{\rm out}, p_{\rm in})


The electrical power consumption   is given by:

W =  \eta(q) \cdot q \cdot (p_{\rm out}-p_{\rm in})

where

pump efficiency


In most practical cases  the pump  model  depends on the difference between intake and discharge pressure  and called pump characteristic curve (see Fig. 1):

q = q(p_{\rm out} - p_{\rm in})


Fig. 1. Pump Characteristic Curve as function of delta pressure .


A popular pump proxy model is given by the quadratic equation:


q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -1 + k_f +  \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p_{\rm out}- p_{\rm in})/\delta p_{\rm max}) \ } \, \right]



p_{\rm out} = p_{\rm in} +  \delta p_{\rm max} \cdot \left[ 1+ 
(k_f -1 ) \cdot \frac{q}{q_{\rm max}} - k_f \cdot \left( \frac{q}{q_{\rm max}} \right)^2
 \right ]




\eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 -  q/q_{\rm max})


where

maximum pressure gain that pump can exert over the input pressure 

maximum flowrate that pump can produce

total hydraulic pump friction (dimensionless)

pump efficiency

maximum pump efficiency


The plunger pump and centrifugal pumps are normally adjusted by working frequency 

See also


Natural Science / Engineering / Device / Pump

Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS)


References




https://www.ampika.ru/Princip_raboty.html 

Matthew Amao, Electrical Submersible Pumping (ESP) Systems, March 09, 2014

Он-лайн калькулятор трубопроводной сети