The pressure drop in pipe flow due to fluid friction with pipe walls depends on mass flux density and friction factor distribution along the pipe.

\left(   \frac{dp}{dl} \right)_f = - \frac{ j_m^2}{2 d}  \cdot \frac{f(l)}{\rho(l)}

where

pipe length 

mass flux

mass flowrate 

pipe diameter

pipe cross-section area

Darcy friction factor

inner pipe walls roughness

Reynolds number 

dynamic viscosity as function of fluid temperature  and pressure 


The accurate calculations require
solving of a self-consistent equation of Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model.

There are few popular practical approximations based on assumption of constant friction factor and  linear density-pressure equation of state.


Approximations




\Delta p(L)=- \frac{j_m^2}{\rho_0} \cdot \frac{f_0 \, L}{2 \, d } 


Incompressible fluid


\Delta p (L) =- \frac{\rho_0}{c^*} \cdot  \left[
1 - \sqrt{  1 - j_m^2 \cdot \frac{c^* \rho^*}{\rho_0^2} 
\cdot \frac{f_0 L}{d}}
\right]


Slightly compressible fluid


\Delta p (L) =- p_0 \cdot \left[ 1- \sqrt{ 

1 - \frac{j_m^2}{\rho_0 \, p_0} \cdot \frac{f_o L}{d} 

} \right] 



Ideal gas


\Delta p (L) =- \frac{j_m^2}{\rho_0} \cdot \frac{f_0}{2 \, d} \cdot 
\frac{ 1- \exp \left( - c^* \rho^* G \, L \right)}{c^* \rho^* G}



Gravity dominated density distribution


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ]