Motivation


Explicit solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Intake temperature 

Along-pipe temperature profile 

Intake pressure 

Intake flowrate 

Pipeline trajectory TVDss

Pipe cross-section area  


Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area along hole


Equations


Pressure profile along the pipe


L = \frac{1}{2 \, G \, c^*  \rho^*}  \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F}
-\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}



 \cos \theta \neq 0



L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2)
 - \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}



 \cos \theta = 0


where

mass flux

mass flowrate

Intake volumetric flowrate

Intake fluid density 

elevation drop along pipe trajectory

Darcy friction factor 

Reynolds number in Pipe Flow

dynamic viscosity as function of fluid temperature  and density 

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

gravity acceleration along pipe 




See Derivation of Pressure Profile in GF-Proxy Pipe Flow @model



The equation  for horizontal pipelines can be re-written explicitly in terms of pressure:

\frac{fL}{2d} = (\rho^*/j_m^2)  \cdot (p_0-p) \cdot (1+ 0.5 \, c^* \cdot (p+p_0)) -  \ln \frac{1+c^* \cdot p_0}{1+c^* \cdot p}


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Steady-State Pipe Flow @model

Pressure Profile in G-Proxy Pipe Flow @modelPressure Profile in GF-Proxy Pipe Flow @model


References




PipeFlowSimulator.xls