Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Fluid temperature at inlet point ()

Along-pipe temperature profile 

Fluid pressure at inlet point ()

Fluid density 

Fluid flowrate  at inlet point ()

Pipeline trajectory TVDss

Pipe cross-section area  


Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area along hole


Equations



\left(\rho(p) -  j_m^2 \cdot c(p)   \right)  \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l)  - \frac{ j_m^2 }{2 d} \cdot  f({\rm Re}, \, \epsilon)



p(l=0) = p_0




u(l) = \frac{j_m}{\rho(l)}



q(l) =A \cdot u(l)


where

mass flux

Fluid flowrate at inlet point ()

Fluid density at inlet point ()

Fluid density at any point 

Fluid Compressibility

Darcy friction factor

Reynolds number in Pipe Flow

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.



Approximations



Incompressible pipe flow 
with constant viscosity 

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model : 

Pressure profilePressure gradient profileFluid velocityFluid rate


p(l) = p_0 + \rho_0 \, g \, z(l)  
- \frac{j_m^2  f_0}{2 \, \rho_0 \, d} \cdot l



\frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{j_m^2  f_0}{2 \, \rho_0 \, d}



q(l) =q_0 = \rm const



u(l) = u_0 = \frac{q_0}{A} = \rm const


where

Darcy friction factor at inlet point ()

Reynolds number at inlet point ()

Dynamic Fluid Viscosity at inlet point ()



Incompressible fluid  means that compressibility vanishes  and fluid velocity is going to be constant along the pipeline trajectory .

For the constant viscosity  along the pipeline trajectory the Reynolds number  and Darcy friction factor  are going to be constant along the pipeline trajectory.

Equation  becomes:

\frac{dp}{dl} = \rho_0 \, g \, \frac{dz}{dl}  - \frac{j_m^2  f_0}{2 \, \rho_0 \, d}

which leads to  after substituting   and can be explicitly integrated leading to .



The first term in the right side of 
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In many practical applications the water in 
water producing wells or water injecting wells can be considered as incompressible and friction factor  can be assumed constant  along-hole ( see  Darcy friction factor in water producing/injecting wells ).


Pressure Profile in G-Proxy Pipe Flow @model

Pressure Profile in G-Proxy Pipe Flow @model

Pressure Profile in GF-Proxy Pipe Flow @model

Pressure Profile in GF-Proxy Pipe Flow @model


Pressure Profile in GFC-Proxy Pipe Flow @model

Pressure Profile in GFC-Proxy Pipe Flow @model



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Quasi-Isothermal Stationary Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ]

Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model ]

Temperature Profile in Homogenous Pipe Flow @model ]

Fluid Compressibility ] Fluid Compressibility @model ]


References




PipeFlowSimulator.xls
Pressure loss in pipe @ neutrium.net 
R. Shankar, Pipe Flow Calculations, Clarkson University [PDF]
Pressure loss in chokes @ Studopedia