Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Inlet temperature 

Along-pipe temperature profile 

Inlet pressure 

Fluid density 

Inlet flowrate 

Pipeline trajectory TVDss

Pipe cross-section area  


Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area along hole


Equations



\left(\rho(p) -  j_m^2 \cdot c(p)   \right)  \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l)  - \frac{ j_m^2 }{2 d} \cdot  f({\rm Re}, \, \epsilon)



p(l=0) = p_0




u(l) = \frac{\rho_0 \cdot q_0}{\rho(T(l), p(l))) \cdot A}



q(l) = \frac{\rho_0 \cdot q_0}{\rho(T(l),p(l))}


where

mass flux

fluid flow rate at pipe intake

fluid density at intake temperature and pressure

Fluid Compressibility

Darcy friction factor

Reynolds number in Pipe Flow

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.



Approximations



Incompressible pipe flow 
with constant viscosity 

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model

Pressure profilePressure gradient profileFluid velocityFluid rate


p(l) = p_0 + \rho_0 \, g \, z(l)  
- \frac{j_m^2  f_0}{2 \, \rho_0 \, d} \cdot l



\frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{j_m^2  f_0}{2 \, \rho_0 \, d}



q(l) =q_0 = \rm const



u(l) = u_0 = \frac{q_0}{A} = \rm const


where

Darcy friction factor at inlet point

Reynolds number at inlet point

Dynamic Fluid Viscosity at inlet point



Incompressible fluid  means that compressibility vanishes  and fluid velocity is going to be constant along the pipeline trajectory .

For the constant viscosity  along the pipeline trajectory the Reynolds number  and Darcy friction factor  are going to be constant along the pipeline trajectory.

Equation  becomes:

\frac{dp}{dl} = \rho_s \, g \, \frac{dz}{dl}  - \frac{\rho_s \, q_s^2 }{2 A^2 d} f_s

which leads to  after substituting   and can be explicitly integrated leading to .



The first term in the right side of 
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In many practical applications the water in 
water producing wells or water injecting wells can be considered as incompressible and friction factor  can be assumed constant  along-hole ( see  Darcy friction factor in water producing/injecting wells ).


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Quasi-Isothermal Stationary Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ]

Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model ]

Temperature Profile in Homogenous Pipe Flow @model ]

Fluid Compressibility ] Fluid Compressibility @model ]


References




PipeFlowSimulator.xls
Pressure loss in pipe @ neutrium.net 
R. Shankar, Pipe Flow Calculations, Clarkson University [PDF]
Pressure loss in chokes @ Studopedia