\sqrt{\, z(t) \,} = \sqrt{\, H \, } - b \cdot t 




b = \frac{\phi}{2} \cdot \frac{A}{S}  \cdot \sqrt{\, g \,}



\sqrt{\, p(t) \,} = \sqrt{\, p_0 \, } - b \cdot g \cdot t 



p_0 = \rho \, g \, H




{\rm v}(t) = {\rm v}_0 - c \cdot g \cdot t 



{\rm v}_0 = \phi \cdot \sqrt{2 \, g \, H}



c = \frac{\phi^2}{\sqrt{2}} \cdot \frac{A}{S} 



q(t) = q_0 - d \cdot g \cdot t 



q_0 = S \cdot \phi \cdot \sqrt{2 \, g \, H}



d = \frac{\phi^2}{\sqrt{2}} \cdot A



where

fluid level in the tank above the tank bottom at time 

initial fluid level in the tank above the tank bottom

pressure at the bottom of the tank at time 

initial pressure at the bottom of the tank

outflow velocity at time 

initial outflow velocity

outflow rate at time 

initial outflow rate

cross-sectional area of the tank

cross-sectional area of the drainage orifice

correction factor for the drainage orifice

gravity constant


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics