@wikipedia


In Pipe Flow the Reynolds number can be written in simplified form: 

{\rm Re} =  \frac{j_m \cdot d}{\mu(T,p)} = \frac{4 \, \dot m}{\pi \, d} \cdot \frac{1}{\mu(T,p)}

where

mass flux

mass flowrate

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

dynamic viscosity as function of fluid temperature  and pressure 




{\rm Re} =  \frac{u \cdot d}{\nu} =  \frac{\rho \cdot u \cdot d}{\mu} = \frac{j_m \cdot d}{\mu(T,p)} 

where

average cross-sectional flow velocity

fluid density

kinematic viscosity 




The 
mass flowrate is constant along the pipe:  .

In many engineering application the pipeline is built from inter-connected pipes or ducts with constant cross-sectional area  which means that mass flux is also constant along pipes:  .

Equation  shows that in this case a variation of Reynolds number along the pipe will be a function of fluid viscosity only:  which in turn is a function of fluid temperature  and pressure  along the pipe.

See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics /  Fluid Dynamics / Fluid flow regimes / Reynolds number

Pipe Flow / Pipe Flow Dynamics ]