Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Intake temperature 

Along-pipe temperature profile 

Intake pressure 


Intake flowrate 


Pipeline trajectory TVDss

Pipe cross-section area  


Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area along hole


Equations


Pressure profilePressure gradient profile


p(l) = p_0 + \rho_s \, g \, \Delta z(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l



\frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0


Mass FluxMass Flowrate


j_m = \rho_0 \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_0}



\dot m = j_m \cdot A = \rho_0 \cdot A \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_s}


 Volumetric Flowrate

Intake Fluid velocity


q_0 = \dot m / \rho_0 = A \cdot \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }



u_0 = j_m/ \rho_0 =q_0 / A = \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }


where

Intake mass flux

mass flowrate

Intake Fluid velocity

elevation drop along pipe trajectory

Darcy friction factor at intake point

Reynolds number at intake point

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




See Pressure Profile in Stationary Quasi-Isothermal Homogenous Pipe Flow @model



The first term in the right side of  defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant  along-hole ( see  Darcy friction factor in water producing/injecting wells ).



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Stationary Quasi-Isothermal Homogenous Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] 

Homogenous Pipe Flow Temperature Profile @model ]



References




PipeFlowSimulator.xls
Pressure loss in pipe @ neutrium.net 
R. Shankar, Pipe Flow Calculations, Clarkson University [PDF]
Pressure loss in chokes @ Studopedia