Motivation


Subsurface Temperature Profile around Lateral Flow makes adjustments to Geothermal Temperature Profile  to account for the lateral reservoir flow with a constant temperature (see Fig. 1 and Fig. 2).


Fig. 1. Sample Subsurface Temperature Profile around a  height lateral flow at depth  with temperature 

Fig. 2. Sample Subsurface Temperature Profile around two lateral flows with temperature  and 


Outputs


Subsurface temperature distribution


Inputs


Time lapse after the temperature step from   up to 

Spatial coordinate along the transversal direction to constant temperature  plane 

TVDss of the top of the lateral flow unit

True vertical thickness of the the lateral flow unit

Boundary temperature at 

Thermal diffusivity of the surroundings

Geothermal Temperature Profile


Equations


Driving equationInitial conditions Boundary conditions


\frac{\partial T_e}{\partial t} = a_e^2 \, \Delta T_e = a_e^2 \, \frac{\partial^2 T_e}{\partial z^2}



T_e(t=0, z) = T_G(z)



T_e(t, z_f \leq z \leq z_f + h_f) = T_f = {\rm const}


T_e(t, z \rightarrow \infty) = T_G(z)



Solution



\mbox{if} \, z < z_f \; \Longrightarrow \;T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z_f-z}{\sqrt{4 a_e t}} \right)



\mbox{if} \, z_f \leq z \leq z_f + h_f  \; \Longrightarrow \; T_e(t,z) = T_f



\mbox{if} \, z > z_f + h_f  \; \Longrightarrow \; T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z-z_f-h_f}{\sqrt{4 a_e t}} \right)


where

Error function


See Also


Geology / Geothermal Temperature Field / Geothermal Temperature Profile

Physics / Fluid Dynamics / Linear Fluid Flow 

Temperature Flat Source Solution @model ] [ Geothermal Temperature Profile @model ]

Reference



Subsurface Temperature Profile around Lateral Flow @model.pptx






Heat flow equation for Semispace Linear Conduction:

\frac{\partial T}{\partial t} = a^2 \Delta T = a^2\frac{\partial^2 T}{\partial z^2}

Initial Conditions

T(t=0, z) = T_G(z)

Boundary conditions

T(t, z=0) = T_f = {\rm const}, \quad T(t, z \rightarrow \infty) = T_G(z)


The exact solution is given by following formula:

T(t,z) = T_f + (T_G(z) - T_f) \cdot \frac{2}{\sqrt{\pi}} \int_0^{z/\sqrt{4at}} e^{-\xi^2} d\xi

A fair approximation at late times () is given by expanding the integral:

T(t,z) = T_f + (T_G(z) - T_f) \cdot \Bigg[  1- \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) \Bigg]

where

\zeta = \frac{z}{4 a t}

The final solution for temperature  above the flowing unit is represented by RHK pipe flow solution where TG is replaced with Tb from .


For the intervals between two injection units the one needs to account for the SLC contribution from upper flowing unit and from lower flowing unit which can be done using the superposition.


First, let's rewrite  in terms of temperature gain:

dT(t, z) = T(t,z) - T_G(z)= -  (T_G(z) - T_f) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 


Now one can write down the temperature disturbance from the overlying flowing unit A1:

dT_{b,over}(t, z) = T_{b,up}(t,z) - T_G(z)= -  (T_G(z) - T_{f, A1}) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 
and from the underlying flowing unit A2:
dT_{b,under}(t, z) = T_{b,up}(t,z) - T_G(z)= -  (T_G(z) - T_{f, A2}) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 


The background temperature disturbance between the flowing units will be:

T_b(t, z) = T_G(z) + dT_{b,over}(t, z) + dT_{b,under}(t, z)


Replacing the static value of  in RHK model with dynamic value of   one arrives to the final wellbore temperature model with account of heat exchange with surrounding rocks and cooling effects from flowing units (Semispace Linear Conduction).