Motivation


Analytical model of temperature step-response in a Homogenous Stationary Pipe Flow with account for the heat exchange with surroundings

Ramey, H. J. (1962, April 1). Wellbore Heat Transmission. Society of Petroleum Engineers. doi:10.2118/96-PA

.

Model equally works for wellbore flow, ground, on-ground and bottom-water pipelines.

Outputs

Along-hole Temperature Profile

where 

Flowing duration

Length along pipe


Inputs

Intake temperature

Background temperature of the surroundings

Mass flowrate

Heat Transfer Coefficient (HTC) between pipe fluid and surroundings

Thermal Diffusivity of the surroundings

Flowing pipe radius

Thermal Conductivity of the surroundings

Wellbore radius


Equations


T(t, l) = T_e(l) - R(t) \, G_e(l)  +  \Big[ T_s - T_e(0) + R(t) \, G_e(l) \Big]  \cdot e^{ - l/R(t)} 



G_e = \frac{dT_e}{dl}




t_D(t) = \frac{a_e \, t}{r_w^2}



R(t) = \frac{\dot m \, c_p}{2 \pi \, \lambda_e} \cdot \left( T_D(t) + \frac{\lambda_e}{r_f \, U} \right)



T_D(t) = \ln \Big[ e^{-0.2 \, t_D} + (1.5 - 0.3719 \, e^{-t_D}) \, \sqrt{t_D} \Big]  



Assumptions

Intake Flowrate is constant in time

Intake Temperature is constant in time

Thermal diffusivity of the surroundings is constant along-hole

Thermal Conductivity of the surroundings is constant along-hole

Flowing pipe radius is constant along-holeWellbore radius is constant along-hole

Heat Transfer Coefficient (HTC) between pipe fluid and surroundings is constant along-hole


See Also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Temperature Profile in Pipe Flow @model / Temperature Profile in Homogenous Pipe Flow @model


References




Ramey, H. J. (1962, April 1). Wellbore Heat Transmission. Society of Petroleum Engineers. doi:10.2118/96-PA.pdf