@wikipedia


Fluid Compressibility is a function of temperature  and pressure :

c = c(T, p)


The multi-phase fluid compressibility is a linear sum of compressibilities of its phases (see multi-phase fluid compressibility @ model).


There is no universal analytical model for Fluid Compressibility but there is a good number of approximations which can be effectively used in engineering practice.

Approximations


Incompressible fluidCompressible fluid
Full-Range Compressibility Proxy Model

Slightly compressible fluidStrongly Compressible Fluid



Ideal Gas 


c(T, p) = 0



c(T, p) = c_0 = \rm const




c(T, p) = \frac{1}{p}



c(T, p) = \frac{c_0(T)}{1+c_0(T) \cdot p}



\rho(T, p) = \rho_0(T)



\rho(T, p) = \rho_0 \cdot \exp \left[ c_0 \cdot (p-p_0) \right]




\rho(T, p) = \frac{\rho_0(T)}{p_0} \cdot p



\rho(T, p) = \rho_0(T) \cdot \frac{1+c_0 \, p}{1+c_0 \, p_0}



Z(T, p) = \frac{p}{p_0}



Z(T, p) =\frac{p}{p_0}\cdot \exp \left[ - c_0 \cdot (p-p_0) \right]




Z(T, p) = 1



Z(T, p) = \frac{p}{p_0} \cdot \frac{1+c_0 \, p_0}{1 + c_0 \, p}



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Statics / Fluid Compressibility

[Compressibility] [Multi-phase compressibility @model]