The general form of objective function  for production targets optimisation is given by:

G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ R_O \cdot q^{\uparrow}_{O, p} + R_G \cdot  q^{\uparrow}_{G, p} \right] 
- \sum_{p=1}^{N^{\uparrow}} C^{\uparrow}_L \cdot q^{\uparrow}_{L, p}
- \sum_{p=1}^{N^{\uparrow}} C^{\uparrow}_O \cdot q^{\uparrow}_{O, p} 
- \sum_{p=1}^{N^{\uparrow}} C^{\uparrow}_G \cdot q^{\uparrow}_{G, p} 
- \sum_{p=1}^{N^{\uparrow}} C^{\uparrow}_W \cdot q^{\uparrow}_{W, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_W \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_G \cdot q^{\downarrow}_{G, i} \rightarrow \rm max

where

volume/day

oil production rate for -th producer, 

cash/volumecost of produced oil treatment and transportation from wellhead to CMS

cash/volumeoil selling price

volume/day

gas production rate for -th producer, 

cash/volumecost of produced gas treatment and transportation from wellhead to CMS

cash/volumegas selling price

volume/day

water production rate for -th producer

cash/volumecost of produced water treatment and transportation from wellhead to CMS

counts

number of producers at 

volume/day

liquid production rate for -th producer

cash/volumecost of fluid lift, cash/volume

counts

number of water injectors at 

volume/day

water injection rate for -th water injector

cash/volumecost of water injection, including purchase, treatment, transportation and pumping

counts

number of gas injectors at 

volume/day

gas injection rate for -th gas injector

cash/volumecost of gas injection, including purchase, treatment, transportation and pumping

monthstime


This can be rewritten in terms of sandface flowrates:

G = \sum_{p=1}^{N^{\uparrow}_P}} G^{\uparrow}_{ut,p} \cdot q^{\uparrow}_{t, p}
- \sum_{i=1}^{N^{\downarrow_W} G^{\downarrow}_w  \cdot q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow_G} G^{\downarrow}_g  \cdot q^{\downarrow}_{g, i} \rightarrow \rm max

where




G = \sum_{p=1}^{N_{\rm prod}} \left[ (R_O -C_O) \cdot q^{\uparrow}_{O, p} + (R_G-C_G) \cdot  q^{\uparrow}_{G, p}
- C_L  \cdot q^{\uparrow}_{L, p} - C_W  \cdot q^{\uparrow}_{W, p} \right] 
- \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj}  \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj}  \cdot q^{\downarrow}_{G, i} \rightarrow \rm max


G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot  q^{\uparrow}_{O, p}
- (C_L + C_W \cdot Y_w)  \cdot q^{\uparrow}_{L, p}  \right] 
- \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj}  \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj}  \cdot q^{\downarrow}_{G, i} \rightarrow \rm max


G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot  (1-Y_w)
- (C_L + C_W \cdot Y_w)    \right] \cdot q^{\uparrow}_{L, p}
- \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj}  \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj}  \cdot q^{\downarrow}_{G, i} \rightarrow \rm max






See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology