Consider a well-reservoir system (Fig. 1) consisting of:


The injection drainage volume   includes the drainage volume  of producer W1 and may be equal to it  or may be bigger   in case injector W0 supports other producers {W1 .. WN}: .


Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate production: 


The bottom-hole pressure response  in producer W1 to the flowrate variation  in injector W0:

\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q^{\downarrow}_0

where

time since the water injection rate has changed by the  value.

cross-well pressure transient response in producer W1 to the unit-rate production in injector W0



Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1  and varying injection rate at injector W0 :

p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau)

Consider a step-change in injector's W0 flowrate  at zero time , which can be writen as 

q_0(\tau) = \delta q^{\downarrow}_0 \cdot H(\tau)

where  is Heaviside step function:

H(\tau) = \begin{cases} 0, &  \tau <0 \\  1, &\tau \geq 0\end{cases}

The differential  then can be written as:

d q^{\downarrow}_0(\tau) = q_0'(\tau) d\tau = \delta q^{\downarrow}_0 \cdot H'(\tau) \,  d\tau = \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau

The responding pressure variation  in producer Wwill be:

\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 01}(t) \cdot  \delta q^{\downarrow}_0

which leads to .



Case #2 – Constant BHP


Assume that the flowrate in producer W1 is being automatically adjusted by  to compensate the bottom-hole pressure variation  in response to the  total sandface flowrate variation  in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times . In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response  in producer W1 to the flowrate variation  in injector W0 is going to be:

\delta q^{\uparrow}_1(t) = -^{\uparrow} \frac{\dot p_{u,\rm 01}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q^{\downarrow}_0

where

time since injector's W0 rate has changed by .

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W0

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well



Consider a pressure convolution equation for the above 2-wells system with constant BHP:

p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) \right)^{\cdot} = 0


p_{u,\rm 11}(0) \cdot \dot q^{\uparrow}_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau)  = - p_{u,\rm 01}(0) \cdot \dot q^{\downarrow}_0(t) -  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) 

The zero-time value of DTR / CTR is zero by definition  which leads to:

\int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau)  = -  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) 

Consider a step-change in producer's W1 flowrate  and injector's W0 flowrate  at zero time , which can be written as  .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and .

Substituting this to  leads to:

\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta q^{\uparrow}_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 01}(t-\tau) \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau 


 \dot p_{u,\rm 11}(t)  \delta q^{\uparrow}_1   = -  \dot p_{u,\rm 01}(t) \delta q^{\downarrow}_0  

which leads to .



For the finite-volume drain  the flowrate response factor  is getting stabilised over time as:

\delta q^{\uparrow}_1 / \delta q^{\downarrow}_0 = - f_{01} = - \frac{V_{\phi, 1}}{ V_{\phi, 0}} = \rm const

The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider  as constant in time.



For the finite-volume reservoir  the DTR and CTR are both going through the PSS flow regime at late transient times:


p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}



p_{u,\rm 01}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,0}}


where

average drain-area  total compressibility of formation within   which is jointly drained by producer W1 and injector W0 

Substituting  and  in  one arrives to .



In case injector W0 supports only one producer W1, then both wells drain the same reservoir volume  so that  leads to:

\delta q^{\uparrow}_1 = -\delta q^{\downarrow}_0

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W0.


In case injector W0 supports many producers {W1 .. WN} then all injection shares towards producers are going to sum up to a unit value:

\sum_{k=1}^N f_{0k} = 1 	\quad \Leftrightarrow \quad \sum_{k=1}^N V_{\phi,k} = V_{\phi,0}

with constant coefficients unless there is a thief injection outside the drainage area of all producers and in this case: 

\sum_{k=1}^N f_{0k} < 1	\quad \Leftrightarrow \quad \sum_{k=1}^N V_{\phi,k} < V_{\phi,0}



If pressure around producer W1 is supported by several injectors  then production response in producer W1 is going to be:

\delta q^{\uparrow}_1 =-\sum_i f_{i1} \delta q^{\downarrow}_i

with constant coefficients


The equations  and  make one of the key assumptions in Capacitance Resistance Model (CRM).


It is important to note that CRM assumption that injector W0 may drain bigger volume than producer W1   is a misnomer in most practical cases.

When wells (producers and injectors) are placed into the same connected reservoir volume they drain the same total volume  all together and all UTRs will have the same LTR asymptotic:

p_{u,\rm ik}(t \rightarrow \infty ) \rightarrow \frac{t}{\rm RS}, \quad \forall i \in N_{\rm inj}, k \in N.

where  is total reservoir storage connecting all the wells. 


Moreover, if each well is placed in different reservoir volumes which are only connected through wellbores then again they will all drain the same volume which is the sum of all connected volumes through the wellbores and all UTRs will again trend to the same LTR asymptotic.


In order to relate true UTRs (from numerical grid simulations or from deconvolution) to the CRM injection share constants  one needs to implement a certain workflow:

  1. Start with true UTRs  with the same LTR asymptotic .
  2. Select injector W0 
    1. Select producer W1
      1. Perform a convolution tests to account for the impact from {W2 .. WN} production and from {W-1 .. W-M} on to CTR_01
      2. Perform two convolution tests to account for the impact from {W2 .. WN} production on to DTR_11  and CTR_01 :
        • Test #1 – DTR_11
          • Calculate interfering DTR_11: , meaning that all injectors W0 are shut-down and all producers were working with their historical rates , except producer W1 which is working with unit-rate
        •  Test #2 – CTR_01
          • Calculate interfering CTR_01: , meaning that all producers are shut-down and all injectors are working with their historical rates , except injector W0 which is working with unit-rate
      3. Calculate injection share constant as LLS over equation: 
    2. Repeat the same for other producers (starting from point 2a onwards)
  3. Repeat the same for other injectors (starting from point 2 onwards)



Consider a pressure convolution equation for the well W1 with constant BHP in a multi-well system :

p_1(t) = p_i - \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) - \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

\dot p_1(t) = - \left( \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) \right)^\cdot - 
\left( \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) \right)^\cdot = 0


\sum_{k \in {\rm prod}} p_{u,\rm k1}(0) \dot q^{\uparrow}_k(t) + 
\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm kk}(t-\tau) dq^{\uparrow}_k(\tau) = 
- \sum_{i \in {\rm inj}} p_{u,\rm i1}(0) \dot q^{\downarrow}_i(t) 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

The zero-time value of DTR / CTR is zero by definition  which leads to:

\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

Let's separate producer W1 and injector W0 terms: 

 \int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau)  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 


Consider a step-change in injector's W0 flowrate  at zero time , which can be written as , leading to a step-change in production rate in producer  W1.

Substituting this to  leads to:

\dot p_{u,\rm 11}(t) \delta q^{\uparrow}_1 + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \dot p_{u,\rm 01}(t) \delta q^{\downarrow}_0  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 






Again it is important to note a difference between

and


See also


[UTR] [ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]