@wikipedia


A ratio between compressible fluid volumetric flowrate and incompressible fluid volumetric flowrate through the ideal orifice:

\epsilon = \frac{q_{\rm compressible}}{q_{\rm incompressible}}

where

q_{\rm incompressible} =  \frac{\pi d^2}{4} \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

pressure drop on the choke

orifice narrowing ratio

orifice diameter

pipe diameter 


For incompressible fluids  and slightly compressible fluid (water and most types of oil) the expansion factor is .

For Strongly Compressible Fluid (condensate, steam and gases) the expansion factor is .


The most popular engineering correlation covering various tapping arrangements is given by ISO5167:

\epsilon = 1 - (0.351 + 0.256 \, \beta^4+ 0.93 \, \beta^8) \cdot \left[  1 - \left( \frac{p_{out}}{p_{in}} \right)^{1/\kappa} \, \right]

where

intake pressure

discharge pressure

orifice narrowing ratio

Isentropic exponent (κ), in express analysis can be taken as 1.3


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Orifice Plate Discharge Coefficient ]

Pipeline Engineering / Pipeline / Choke