A ratio between actual volumetric flowrate through the orifice and ideal theoretical estimation:

C_d = \frac{q_{\rm real}}{q_{\rm ideal}}

where

q_{\rm ideal}=\frac{\pi d^2}{4} \cdot \sqrt{\frac{1 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

pressure drop on the choke

choke narrowing ratio

orifice diameter

pipe diameter 


The deviation from ideal estimation  arise from fluid friction with choke elements and possible flow turbulence.


The discharge coefficient   is a function of a choke narrowing ratio  and Reynolds number :

C_d = C_d(\beta, {\rm Re})

It can be estimated for popular choke types or tabulated in laboratory.


The most popular engineering correlation covering all ISO 5167 tapping arrangements is given by Discharge coefficient:

C_d = C_{d, \infty}(\beta) + b(\beta) \cdot {\rm Re}^{-n}


Device

Nozzle, ISA 19320.9− 0.2262 · β4.1170− 8936 · β 19779 · β4.71.15
Orifice, Corner Taps0.5950.0312 · β2.1​ − 0.184 · β691.71 · β2.50.75



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Pipeline Engineering / Pipeline / Choke 


Reference


Stolz,J.,"A Universal Equation for the Calculation of Discharge Coefficient  of Orifice Plates";, Proc. Flomeko 1978- Flow Measurement of Fluids,H. H. Dijstelbergenand E. A.Spencer(Eds), North-HollandPublishingCo.,Amsterdam(1978), pp 519-534



https://neutrium.net/fluid_flow/discharge-coefficient-for-nozzles-and-orifices/


C_d = \frac{d_D}{d} + 0.3167 \cdot \left( \frac{d}{d_D} \right)^{0.6} + 0.025 \cdot \big [ \log {\rm Re} - 4 \big ]