Motivation



One of the key challenges in Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

In many practical cases the temperature distribution for the stationary fluid flow can be approximated by homogenous fluid flow model.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.


Inputs & Outputs


InputsOutputs

along-pipe temperature distribution



inflow temperature , inflow pressure , inflow rate 


initial temperature   of the medium around pipeline



heat transfer coefficient  based on pipeline schematic



Assumptions


Stationary fluid flow
Homogenous fluid flow



Equations




\bigg( 1 -  \frac{c(p) \, \rho_0^2 \, q_0^2}{A^2}   \bigg )  \frac{dp}{dl} = \rho(p) \, g \, \frac{dz}{dl}  - \frac{\rho_0^2 \, q_0^2 }{2 A^2 d} \frac{f(p)}{\rho(p)}



u(l) = \frac{\rho_0 \cdot q_0}{\rho(p) \cdot A(l)}



q(l) = \frac{\rho_0 \cdot q_0}{\rho(p)}



(see Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )

Approximations






See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation 

[ Heat Transfer ][ Heat Transfer Coefficient (HTC) ] 

Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model ]



PipeFlow.xls

Температурный профиль однородного потока жидкости в трубе



References



https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae

https://neutrium.net/fluid_flow/pressure-loss-in-pipe/