@wikipedia


Mathematical form of Mass Conservation for continuum body:

Integral formDifferential form
\frac{d}{dt} \iiint_\Omega \rho \, dV = \frac{dm_\Omega}{dt}
\frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) =   \frac{d\rho (t, {\bf r})}{dt}

where

time

continuum body spatial density distribution

position vector

continuum body spatial velocity distribution

space volume (could be finite or infinite)

mass generation rate with the space volume 


gradient operator


volume-specific mass generation rate at a given point in space


For the specific case of stationary process when density is not explicitly dependent on time:

\frac{\partial \rho}{\partial t} = 0 \rightarrow  \nabla (\rho \, {\bf u}) = 0


For the specific case of finite number of mass generation locations the differential equation  takes form:

\frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) =   \sum_k \dot m_k(t) \cdot \delta({\bf r}-{\bf r}_k) 

where

position vector of the -th source/sink

mass generation rate at -th source/sink:

Dirac delta function


Alternatively it can be written as:

\frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) =   \sum_k \rho(t, {\bf r}) \cdot \dot q_k(t) \cdot \delta({\bf r}-{\bf r}_k) 

wehre

volumetric value of body mass generation rate at -th source/sink:

See also


Natural Science / Physics / Mechanics / Continuum mechanics 

[ Mass Conservation ]