@wikipedia


Darcy friction factor  depends on flow regime, as well as shape and roughness  of inner pipe walls.


For a smooth () tubular pipeline Darcy friction factor  can be estimated from various empirical correlations


f = 64 \, \rm Re^{-1}




Laminar fluid flow

нет стабильных корреляций

Laminar-turbulent transition fluid flow


f = 0.32 \, \rm Re^{-0.25}




Turbulent fluid flow


f = 0.184 \, \rm Re^{-0.2}




Strong-turbulent fluid flow

where

Reynolds number

Inner diameter of a pipe

dynamic fluid viscosity as function of pressure and temperature along the pipe


For non-smooth pipelines  the Darcy friction factor   can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

\frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d}  + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)


For many practical applications the Chirchill correlation provides a fair (< 2 % accuracy) estimation of  Darcy friction factor  for all pipe flow regimes:


f = \frac{64}{\rm Re} \, \Bigg [ 1+ \frac{\big(\rm Re / 8 \big)^{12} }{ \big( \Theta_1 + \Theta_2 \big)^{1.5} }  \Bigg]^{1/12}



\Theta_1 = \left[  2.457 \, \ln \left(  \left( \frac{7}{\rm Re} \right)^{0.9}  + 0.27 \, \frac{\epsilon}{d}  \right)   \right]^{16}



\Theta_2 = \left(  \frac{37530}{\rm Re} \right)^{16}



Typical surface roughness of a factory steel pipelines is  = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ]