A property characterizing agility of the fluid under pressure gradient as a ratio of reservoir permeability by dynamic fluid viscosity:

M = \frac{k}{\mu}

where 

formation permeability to fluid

dynamic viscosity of fluid


In multiphase flow the concept of total fluid mobility is not well-defined as phases may have different mobilities and flow quite independently from each other, having different pressures, moving at different velocities and segregated in space.


But for relatively homogeneous multi-phase flow (phases may move at different velocities but occupy the same reservoir space and have the same pressure) the multi-phase mobility may be defined by Perrine model:


M = k_{air} \left[M_{rw} + \left( 1 + \frac{R_s \, B_g}{B_o} \right) \cdot M_{ro} + \left( 1 + \frac{R_v \, B_o}{B_g} \right) \cdot M_{rg} \right]




\left<\frac{k}{\mu} \right> = k_{air} \left[ \frac{k_{rw}}{\mu_w} + \left( 1 + \frac{R_s \, B_g}{B_o} \right) \cdot \frac{k_{ro}}{\mu_o} + \left( 1 + \frac{R_v \, B_o}{B_g} \right) \cdot \frac{k_{rg}}{\mu_g} \right]




For the case of 2-phase Oil + Water fluid model (when Perrine model makes the most practical sense):


M = k_{air} \left[ M_{rw} + M_{ro}  \right]




\left<\frac{k}{\mu} \right> = k_{air} \left[ \frac{k_{rw}}{\mu_w} + \frac{k_{ro}}{\mu_o}  \right]




See also


Physics /  Fluid Dynamics / Percolation

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Reservoir Flow Simulation

Field Study & Modelling ] [ Phase mobilities ] [ Relative Phase mobilities ]



Arax Multiphase ToolBox.xlsx