OILWATER
k_{row}(s_o) = k_{rowc} \cdot  \bigg[  \frac{ s_o - s_{orw}   }{ 1- s_{wl} - s_{orw}  } \bigg]^{n_{ow}}
k_{rwo}(s_w) = k_{rwoc} \cdot  \bigg[ 

 \frac{ s_w - s_{wco}   }{ 1- s_{wco} - s_{orw}  } \bigg]^{n_{wo}}

current oil saturation,

residual oil saturation to water displacement, below which oil is immobile

 critical water saturation to oil displacement, below which water is immobile

maximum oil relative permeability to water displacement

maximum water relative permeability to oil displacement

oil relative permeability curvature to water displacement

water relative permeability curvature to oil displacement


where  is connate water saturation which maybe

or


This model assumes no free gas presence in pores.

Fig. 1. Typical Oil+Water RPM Corey @model


The alternative form of the Oil+Water RPM Corey @model can be presented as a function of normalized water saturation  :

s = \frac{s_w - s_{wi}}{1-s_{wl}-s_{orw}}

which changes between  for initial water saturation  and   for maximum water saturation .


In this case equations  and   take form:

OILWATER
k_{row}(s_o) = k_{rowc} \cdot (1-s)^{n_{ow}}
k_{rwo}(s_w) = k^*_{rwoc} \cdot (s - s^*)^{n_{wo}}


s^* = \frac{s_{wco}-s_{wi}}{1-s_{wl}-s_{orw}}
k^*_{rwoc} = k_{rwoc} \cdot \left( \frac{1-s_{wl}-s_{orw}}{1-s_{wco}-s_{orw}} \right)^{n_{wo}}

and fractional flow function is going to be:

f_w = \frac{M_{rwo}}{M_{rwo} + M_{row}} = \frac{(s-s^*)^{n_{wo}}}{(s-s^*)^{n_{wo}} + g \cdot (1-s)^{n_{ow}}}
\dot f_w = \frac{d f_w}{ds} = g \cdot (s-s^*)^{n_{wo}-1} \cdot
\frac{ n_{wo} (1-s)^{n_{ow}} + n_{ow} (s-s^*) (1-s)^{n_{ow}-1}}
{\left[ (s-s^*)^{n_{wo}} + g \cdot (1-s)^{n_{ow}} \right]^2}

where

g = \frac{M_{rowc}}{M_{rwoc}} \cdot \left( \frac{1-s_{wco}-s_{orw}}{1-s_{wl}-s_{orw}} \right)^{n_{wo}}


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petrophysics / Relative Permeability / RPM @model

Permeability ] [ Absolute permeability ]