Definition



Primary Production Analysis is the specific workflow and report template on Primary Well & Reservoir Performance Indicators.


Application




Limitations



PRIME does not pretend to predict pressure and reserves distribution as 3D dynamic model does.


It only provides hints for misperforming wells and sectors which need a further focus.


Technology



Primary Production Analysis is built around production data against material balance and require current FDP volumetrics, PVT and SCAL models. 


The PRIME workflow has certain specifics for oil producers, water injectors, gas injectors and field/sector analysis. 


The PRIME analysis is



PRIME Metrics

PRIME Mathematics







Metric nameDiagnostic plotsObjectives
1Production History Map

Background = Structure

Bubbles = qo, qg , qw, qinj

Number = CurVRR, Pe

Production Distribution Overview
2Recovery Map

Background = STOIIP

Bubbles = Qo, Qg , Qw, Qinj

Number = CumVRR, Pe

Recovery Distribution Overview
3Cross-section

Background = STOIIP & Structure

Bubbles = VRR

Number = Pe , Pem

Vertical Flow Proifle Overview
3Production History Graphs

Left Axis = qo, qg , qw, qinj,

Rigth Axis = Yw, GOR, Pe , Np, Ninj

Hor Axis = Elapsed Time

Production History Overview
4

Decline Curve Analysis

Left Axis = qo1, qliq1, qinj1,

Rigth Axis = Yw, GOR, VRR, Pe

Hor Axis = Elapsed Time

Production Forecast
5Recovery Diagnostic

Left Axis = qo1, qliq1, qinj1

Rigth Axis =Yw, GOR, VRR, Pe, Pem

Hor Axis = RF

Estimate recovery efficiency and pressure decline
6Watercut Diagnostic

Left Axis = Yw, Ywm

Hor Axis = qliq

Check for water balance and thief water production
7GOR Diagnostic

Left Axis = GOR, GORgm

Hor Axis =qo

Check for gas balance and thief gas production
8

Injection Efficiency Diagnostics

Left Axis = PIR , PIRm

Hor Axis = Yw

Evaluate WI efficiency
9Well Performance Analysis

Left Axis = Pwf_IPR , Pwf_VLP

Hor Axis = qo

Check for the optimal production/injection target
10

Productivity Index Diagnostic

Left Axis = JPI, JPIm

Hor Axis = dP = Pwf - Pe

Check for PI dynamics






Property AbbrevyProperty NameFormula
VRRcum

Cumulative Voidage Replacement Ratio


{\rm VRR_{cum}} = \frac{B_w \, Q_{WI}}{B_w \, Q_W + B_o \, Q_O + B_g Q_G - B_g R_s Q_O}


VRRcur

Current Voidage Replacement Ratio

(month over month)


{\rm VRR_{cur}} = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g (q_G - R_s Q_O)}


RF

Recovery Factor



{\rm RF} = \frac{Q_O}{V_{STOIIP}}


Yw

Watercut (production)


{\rm Y_w} = \frac{q_W}{q_{LIQ}}




YwmWatercut (proxy-model)


{\rm Y_{wm}} = \frac{1}{1 + \frac{K_{ro}}{K_{rw}} \cdot \frac{ \mu_w}{\mu_o}  \cdot \frac{B_w}{B_o} }


s_w = s_{wi} + (1-s_{wi}-s_{or}) \cdot \rm RF


GORGas-Oil Ratio (production)


{\rm GOR} = \frac{q_g}{q_o}


GOR_mGas-Oil Ratio (proxy-model)


{\rm GOR_m} = R_s +  \frac{k_{rg}}{k_{ro}} 
\cdot \frac{\mu_o}{\mu_g} 
\cdot \frac{B_o }{B_g}


qLIQLiquid rate


q_{LIQ} = q_O + q_W


PIR

Production Injection Ratio (production)



{\rm PIR} = \frac{Q_O}{Q_{WI}}



PIRmProduction Injection Ratio (model)


{\rm PIR_m} = { \frac{1}{VRR} } \cdot { \frac{1-Y_w}{ Y_w + (1-Y_w) \bigg[ \frac{B_o}{B_w} - \frac{B_g}{B_w}(GOR - R_s) \bigg] } }


JOOil Productivity Index


{\rm J_{O}} = \frac{q_O}{P_e - P_{wf}} {\quad \Rightarrow \quad} P_{wf} = P_e - \frac{1}{J_O} q_O


JPI

Total Productivity Index (production)



{\rm J_t} = \frac{q_t}{P_e - P_{wf}}



JPImTotal Productivity Index (model)


{\rm J_{tm} } = \frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} +0.5 + S} 


jPITotal Specific Productivity Index


{\rm j_t} = \frac{q_t}{h \cdot (P_e - P_{wf})}


jPImTotal Specific Productivity Index (model)


{\rm j_{tm} } = \frac{2 \pi <k/\mu>}{\ln \frac{r_e}{r_w} +0.5 + S} 






VRR = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ q_G - R_s \, q_O] } =  \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ GOR - R_s] q_O } = \frac{B_w \, q_{WI}}{B_w \, q_W + [ B_o  + B_g \, ( GOR - R_s) ] \, q_O }


VRR = \frac{q_{WI}}{q_W + \bigg[ \frac{B_o}{B_w}  + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] \, q_O }


Y_w=\frac{q_W}{q_W + q_O} \rightarrow \frac{q_O}{q_W} = \frac{1-Y_w}{Y_w} \rightarrow q_W =  \frac{Y_w}{1-Y_w} \, q_O


VRR =  \frac{q_{WI}}{q_O} \cdot \frac{1}{\frac{Y_w}{1-Y_w}  + \bigg[ \frac{B_o}{B_w}  + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] } =
\frac{q_{WI}}{q_O} \cdot \frac{1-Y_w}{Y_w  + (1-Y_w) \, \bigg[ \frac{B_o}{B_w}  + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }



PIR=\frac{q_O}{q_{WI}} = \frac{1}{VRR} \cdot \frac{1-Y_w}{Y_w  + (1-Y_w) \, \bigg[ \frac{B_o}{B_w}  + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }





 ›   PRIME Diagnostics



Sample Case 1 – Natural Depletion Reservoir

Sample Case 2 – Waterflood Sector Analysis

Sample Case 3 – Oil Producer Analysis

Sample Case 4 – Water Injector Analysis

See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis

Dynamic Data Statistical Correlation