The neutron porosity is usually abbreviated NPHI or PHIN  on log panels and denoted as   in equations.


N_n = \phi N_f + V_{sh} N_{sh} + V_m N_m

which can be re-arranged as:

N_n = N_m  + V_{sh} \cdot (N_{sh} -N_m) + \phi \cdot (N_f - V_{sh} N_m)


The key measurement is compensated neutron log   (log name CNL) from Compensated Neutron Tool.

The key model parameters are:

rock matrix CNL

shale CNL

pore-saturating fluid CNL

mud filtrate CNL

formation water, oil, gas CNL

a fraction of pore volume invaded by mud filtrate

original water, oil, gas reservoir saturations



The values of  and  are calibrated for each lithofacies individually and can be assessed as vertical axis cut-off on  cross-plot against the lab core porosity  and shaliness 

The model also accounts for saturating rock fluids with fluid CNL value .

In overbalance drilling across permeable rocks the saturating fluid is usually mud filtrate

In underbalance drilling the saturating fluid is identified from resistivity logs.  


The total neutron porosity  equation is:

\phi_n = \frac{N_n - N_m}{N_f-V_{sh}N_m}


The effective neutron porosity  equation is:

\phi_{en} = \phi_n -  \frac{N_{sh}-N_m}{N_f - V_{sh}N_m} \cdot V_{sh}


The fluid density  is calculated in-situ using the following equation:

N_f = s_{xo} \rho_{mf} + (1-s_{xo}) ( s_w N_w + s_o N_o + s_g N_g )


The matrix CNL is calculated from the following equation:

N_m = \sum_i V_{m,i} N_{m,i}

where 

 – volume share of the i-th matrix component,

 – density of the i-th matrix component,

.


See also


Petrophysics / Volumetric Rock Model