@wikipedia


The momentum balance equation relating a pressure gradient  in porous medium with induced fluid flow (percolation) with velocity 

-  \nabla p = \frac{\mu}{k} \, {\bf u} + \beta \, \rho \,  | {\bf u} | \, {\bf u}

where

formation permeability 

fluid viscosity

Forchheimer coefficient


Forchheimer coefficient depends on flow regime and formation permeability as:

\beta = \frac{C_E}{\sqrt{k}}

where   is dimensionless quantity called Ergun constant accounting for inertial (kinetic) effects and depending on flow regime only.

  is small for slow percolation (thus reducing Forchheimer equation to Darcy equation) and grows quickly with high flow velocities.


Forchheimer equation can be approximated by non-linear permeability model as:


{\bf u} =  - \frac{k}{\mu} \, k_f \, \nabla p



k_f(|\nabla p|) =  \frac{2}{w} \big[ 1- \sqrt{1-w}   \big]



w = 4 \, \left(\frac{k}{\mu} \right)^2 \, \beta \, \rho \,  |\nabla p| \, < \, 1



See also


Physics /  Fluid Dynamics / Percolation

Darcy Flow Equation ]

Reference


 Philipp Forchheimer (1886). "Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen". Z. Architekt. Ing.-Ver. Hannover. 32: 539–563.