Natural Depletion


The Expected Ultimate Recovery during the natural depletion can be assessed with the following formula:

EUR =  \frac{Q_o}{V_o} =  \frac{ (p_i - p_{wf}) \, c_t}{(1-s_{wi})\, B_o} =

 \frac{ (p_i - p_{wf}) }{(1-s_{wi})\, B_o} \, \big( c_r + s_{wi} c_w + (1-s_{wi})c_o \big)


where  is flowing bottom-hole pressure,  – initial formation pressure,  – formation volume factor for oil,   – cumulative oil production,  – STOIIP,  – initial water saturation in oil pay.



The definition of total compressibility

c_t = \frac{1}{V_{\phi}} \frac{\partial V_{phi}}{\partial p} = c_r + s_{wi} c_w + (1-s_{wi})c_o \big

and can be split into rock, water, oil components:

c_t = c_r + s_{wi} c_w + (1-s_{wi})c_o \big


For low compressible oil compressibility can be assumed constant and the volume reduction can be related to pressure decline as:

\frac{\delta V_\phi}{V_\phi} = c_t \, \delta p = c_t \, (p_i - p_{wf \, min})
\delta V_\phi = Q_o \, B_o

and

V_o = s_o \, V_\phi = (1-s_{wi}) \, V_\phi

hence

\frac{Q_o \, B_o \, (1-s_{wi})}{V_o} = c_t \, (p_i - p_{wf \, min})

and

EUR =  \frac{Q_o}{V_o} =  \frac{ (p_i - p_{wf \, min}) \, c_t}{(1-s_{wi})\, B_o}



For the naturally flowing wells the production bottom hole pressure can be assessed as:

p_{wf} = p_s + \rho_g \, g\, h + \bigg( 1- \frac{\rho_g}{\rho_o} \bigg) \, p_b


where  – tubing-head pressure defind by the production athering system,  – is the true vertical deoth at formation top,  – oil and gas densities,  – bubble-point pressure.


Water flooding


Motivation = maintain formation pressure at sweep interface


EUR =  E_S \, E_D = E_{SV} \, E_{SH} \, E_D


Sweep effciency


Total sweepAreal sweepVertical sweep
E_S = \frac{V_{sweep}}{V_\phi}
E_{SH} = \frac{A_{sweep}}{A_\phi}
E_{SV} = \frac{h_{sweep}}{h_\phi}

– sweep volume

– pore volume

– sweep area

– pore area

– sweep thickness

– pore thickness


Water displacement efficiency


E_D = \frac{1-s_{wi}-s_{orw}}{1-s_{wi})}

Gas flooding


Motivation = maintain formation pressure at sweep interface with gas in case of high water mobility  which makes watrflood inefficient.


Gas displacement efficiency


E_D = \frac{1-s_{wi}-s_{org}}{1-s_{wi})}


WAG flooding


Motivation =  maintain formation pressure at sweep interface with alternating inejction of water and gas  in case of high residual oil to water sweep is high   and gas sweep is less than to water sweep .


E_D = \frac{1-s_{wi}-s_{org}}{1-s_{wi})}


Chemical EOR


Motivation =  maintain formation pressure at sweep interface with chemical injection and reduce residual oil to EOR sweep  .


E_D = \frac{1-s_{wi}-s_{or \, eor}}{1-s_{wi})}

CО2 injection


Reference


[1]   



[2]  Особенности разработки газовых и газоконденсатных залежей и влияние на нее геологических условии

[3]  Dr. Jon Olson, Dr. Mukul Sharma, Dr. Zoya Heidari, Shale Fracturing: The Geology And Technology That Sustained The Boom